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Abstract

NO2-sensing properties of porous In.O3 (pr-In203) powders prepared by ultrasonic-spray
pyrolysis employing polymethylmethacrylate (PMMA) microspheres as a template has been
investigated in this study. The PMMA microspheres were synthesized in water by
ultrasonic-assisted emulsion polymerization employing methyl methacrylate monomer,
sodium lauryl sulfate as a surfactant and ammonium persulfate as an initiator. The PMMA
microspheres synthesized was quite uniform and the particle size was ca. 60.2 nm (measured
by dynamic light scattering). The microstructure of pr-InoOs powders prepared was largely
dependent on the kind of In,O3 sources. The pr-In.O3 which was prepared from In(NOz)s3 as
an In.Oz source (pr-In203(N)) consisted of submicron-sized spherical particles with
well-developed spherical mesopores (several tens of nanometers in pore diameter) and each
oxide wall among pores was constructed with meso-sized In,Os particles connected
continuously. On the other hand, the pr-In2Os which was prepared from InClz as an In203
source (pr-In203(Cl)) was composed of a large number of dispersed meso-sized particles and
a few submicron-sized dense spherical particles. In contrast, the morphology of
conventional In2O3 powder (c-In2O3) prepared by ultrasonic-spray pyrolysis of PMMA-free
In(NO3)z aqueous solution as a reference was relatively dense and roughly-spherical with a
diameter of ca. 100~700 nm. The responses to 1.0 and 10 ppm NO; of pr-In,O3 sensors in
air were much larger than those of a c-1n2O3(N) sensor in the temperature range of less than
250°C and 300°C, respectively. In addition, the response and recovery speeds of both the
pr-In2O3 sensors were much faster than those of the c-In2O3(N) sensor, because of the

well-developed porous structure of the pr-In.O3 sensors.
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1. Introduction

Numerous efforts have been directed to strictly controlling the microstructure of
gas-sensing materials during the last few decades in order to improve their gas sensitivity and
selectivity, because the introduction of well-developed meso- and macro-pores to the
gas-sensing materials and their structural optimization are quite effective in controlling their
gas reactivity and/or diffusivity [1-7]. In order to improve gas-sensing properties, we also
have so far designed microstructural morphology of various gas-sensing materials with
different sizes of well-developed pores. For example, mesoporous semiconductor metal
oxides (mainly SnO; [8-12] and TiO [13, 14]) with large specific surface area and small
crystallites were prepared by utilizing a self-assembly of a surfactant such as
n-cetylpyridinium chloride and a triblock copolymer such as Pluronic P-123 (BASF Corp.,
EO20POsEO2 (EO: ethylene oxide, PO: propylene oxide)) as a template, and the average
diameter of their resultant well-developed mesopores was in the range of 2~5 nm. The
treatment of the as-prepared mesoporous oxides with phosphoric acid largely improved their
thermal stability at elevated temperatures, while maintainng their large specific surface area
(SSA) and small crystallites (CS) (e.g., SSA and CS of typical mesoporous SnO. powder: ca.
370 m? g* and 2.0 nm, respectively, even after calcination at 600°C for 5 h [9]). Therefore,
the phosphoric-acid treatment enabled us to use mesoporous oxides as gas sensor materials at
elevated temperatures. In addition, surface modification of conventional semicondcuting
particles with mesoporous SnO; layers was also quite effective in enhancing the gas-sensing
properties [9, 15, 16].

On the other hand, macroporous oxides [17-26] and carbonates [27, 28] as an gas-sensing
material were also prepared by different preparation methods such as modified sol-gel
technique [17-20], ultrasonic-spray pyrolysis [21-24], sputtering [25] and pulsed laser

deposition [26], employing commercial polymethylmetacrylate (PMMA) microspheres



(150~1500 nm in diameter) as a template. Since the pore size of their macroporous
materials was larger than 100 nm in diameter, the introduction of the relatively-large pores
improved the gas diffusivity in the gas-sensing films and/or disks significantly, and in turn the
gas-sensing properties. However, the pore size was much larger than that enough to improve
the gas diffusivity in the gas-sensing mateirals, and the mechanical strength of such materials
was also relatively inferior to that of above-mentioned mesoporous materials and
conventional gas-sensing materials. Innovative techniques to prepare gas-sensing materials
having well-developed middle-sized pores with a diameter of 5~100 nm are absolutely
indispensable for designing the nano- and micro-structures suitable for achieving
well-controlled gas reactivity and diffusivity in gas-sensing films and/or disks with
relatively-high mechanical properties and then for realizing drastic enhancement in the
gas-sensing properties.

Therefore, PMMA microspheres with a diameter of several tens nanometer, as a template,
were synthesized by ultrasonic-assisted emulsion polymerization and then porous (pr-) In203
powders were prepared by ultrasonic-spray pyrolysis employing the synthesized PMMA
microspheres. Thereafter, their fundamental sensing properties of pr-In2Oz sensors to NO; in

air have been investigated in this study.

2. Experimental
2.1 Synthesis of PMMA microspheres

PMMA microspheres were synthesized by ultrasonic-assisted emulsion polymerization.
First, methyl methacrylate monomer (MMA; Wako Pure Chem. Ind., Ltd., 150 cm?®) was
washed for three times with 0.05 M NaOH aqueous solution (1 dmd®) to remove a
polymerization inhibitor from the MMA monomer. The pure MMA monomer obtained (8 g),

sodium lauryl sulfate (SLS; Nacalai Tesque, Inc., 0.1 g) as a surfactant and ammonium



persulfate (Wako Pure Chem. Ind., 0.3 g) as an initiator were added to deionized water (100
cm?®), and then the resultant aqueous solution was ultrasonic-treated by an ultrasonic
homogenizer (Nissei Corp., US-150T, 19.5 £ 1 kHz). The polymerization of MMA to
PMMA was initiated in the emulsion just upon the irradiation of strong ultrasonic wave to the
solution at room temperature (RT), and the solution temerature increased from RT to ca. 60°C
within 15 min. After the ultrasonic irradiation for 50 min and subsequent agitation by
general blade (400 rpm) at 60°C for 6 h, the stable and uniform dispersion of PMMA

microspheres was prepared.

2.2 Preparation of pr-In203 powders by ultrasonic spray pyrolysis

The PMMA dispersion obtained was mixed with a 0.5 M In(NOs)z or InClz aqueous
solution (PMMA dispension : In(NO3)s or InClz aqueous solution = 37.5 : 100 in volume
ratio) and the mixtures were served as precursor solution of pr-In.O3. Figure 1 shows
shcematic drawing of a feeding system of the precursor solution atomaized by ultrasonication.
The mist of the precursor solution obtained was generated by ultrasonic irradiation (2.4 MHz)
and then it was directly heat-treated in an electric furnace at 1100°C under air flowing (2.5
dm® min) by using a feeding system, as shown in Fig. 1. The porous powders prepared
from a 0.5 M In(NOz); and InCls aqueous solution were denoted as pr-In.O3(N) and
pr-In203(CIl) powders, respectively. A conventional In20s (c-In203) powder was also
prepared by the similar preparation technique using In(NO3)z aqueous solution mixing

without the PMMA dispersion [24].

2.3 Characterization of PMMA microspheres and In203 powders
Thermal decomposition behavior of PMMA microspheres synthesized in this study and

commercial PMMA microspheres (Soken Chem. & Eng. Co. Ltd., MP-1451 (ca. 150 nm in



diameter)) was investigated by thermogravimetric and differential thermal analysis (TG-DTA;
Shimadzu Co., Ltd., DTG-50) up to 1000°C at a heating rate of 10°C min™. The particle
size distribution of the PMMA microspheres obtained was measured at 25°C by dynamic light
scattering (DLS; Malvern instrument Ltd., HPPS). The microstructure of the PMMA and
In.O3 microspheres was observed by scanning electron microscopy (SEM; JEOL Ltd.,
JSM-7500F) and transmission electron microscopy (TEM; JEOL Ltd., JEM2010). The pore
size distribution and specific surface area (SSA) of the In.Oz powders were measured by
Barrett-Joyner-Halenda (BJH) and Brunauer-Emmett-Teller (BET) methods using a N:
adsorption-desorption isotherm (Micromeritics Instrument Corp., Tristar3000), respectively.
Crystal phase of the In.Os powders was characterized by X-ray diffraction analysis (XRD;
Rigaku Corp., RINT2200) using Cu Ka radiation (40 kV, 40 mA), and their crystallite size

(CS) was calculated from the (222) diffraction peak using Scherrer equation.

2.4 Fabrication of thick film sensors and measurement of their gas sensing properties
Thick film sensors were fabricated by screen-printing employing the paste of each In2Os
powder on an alumina substrates equipped with a pair of interdigitated Pt electrodes (gap size:
ca. 200 um), followed by calcination at 550°C for 5 h. Gas response of these sensors was
measured to 1.0 ppm and 10 ppm NO. balanced with air in a flow apparatus at 150~500°C.
The magnitude of response to NO> was defined as the ratio (Rg/Ra) of sensor resistance after

10 min in NO2 (Rg) balanced with air to that in air (Ra).

3. Results and Discussions
3.1 Characterizations of PMMA microspheres and 1n203 powders
Figure 2 shows TG-DTA profiles of PMMA microspheres synthesized in this study,

together with those of commercial PMMA microspheres. The PMMA microspheres



synthesized in this study showed a large exothermic peak at ca. 377°C due to its thermal
decomposition, and the temperature is almost comparable to that of the commercial PMMA
microspheres (ca. 366°C). The information indicates that the synthesized PMMA
microspheres were sufficiently polymerized to a level as is observed for the commercial
PMMA microspheres. The magnitude of the exothermic peak of the synthesized PMMA
microspheres was much sharper and larger than that of the commercial PMMA microspheres,
and this may reflect the difference in the sample mass subjected to TG-DTA measurements.
The weight of the commercial PMMA microspheres steeply decreased with a rise in
temperature in the range of ca. 200~382°C. On the other hand, the weight of PMMA
microspheres synthesized in this study slightly decreased with a rise in temperature in the
range of RT ~ ca. 200°C, probably due to the evaporation of water adsorbed. Beyond that
the weight largely decreased with a rise in temperature up to 386°C, but the maximum rate of
weight loss (slope of the TG curve) of the PMMA microspheres synthesized in this study was
slower than that of the commercial PMMA microspheres, probably due to simultaneous
decomposition of the SLS residues in this temperature range.

Figure 3 shows particle-size distribution of the PMMA microspheres synthesized in this
study. It was found that the average diameter of the PMMA microspheres was ca. 60.2 nm
and the PMMA microspheres synthesized were relatively mono-dispersed in the water
containing SLS. In addition, it was confirmed that the average diameter of PMMA
microspheres synthesized at almost the same conditions was reproducibly in the range of
56~66 nm. Figure 4 shows TEM photographs of the PMMA microspheres which were
filtered from the PMMA dispersion. Morphology of all the PMMA microspheres was
clearly spherical and uniform, and the average diameter of the PMMA microspheres, which
was estimated from Fig. 4, was ca. 61.3 nm. This value was almost comparable to that

estimated by the DLS. The results shown in Figs. 2~4 indicate that uniform PMMA



microspheres with a diameter of less than 100 nm were easily synthesized by the
ultrasonic-assisted emulsion polymerization, as we had expected, and the size of the PMMA
microspheres synthesized was much smaller than that of the smallest one which was
employed as a template in our previous study (commercial PMMA microspheres, diameter: ca.
150 nm) [21-25].

Figure 5 shows XRD patterns of pr-In,Oz and c-In2O3(N) powders. Most peaks of their
XRD patterns were assigned to those for the cubic structure of In.Os (JCPDF: 6-416). The
crystallite size (CS) of the pr-In.Oz powders (17.8 nm for pr-In.O3(N) and 15.3 nm for
pr-In203(Cl)), which was calculated by using Scherrer equation, was smaller than that of the
c-In203(N) powder (25.9 nm). PMMA microspheres covered with SLS in the precursor
solution may inhibit the crystallite growth of In2Os. Figure 6 shows N2
adsorption-desorption isotherms of pr-In,Os and c-In2O3(N) powders, their pore-size
distributions which were obtained by BJH method using a N2 desorption isotherm, together
with their specific surface area (SSA), which was calculated by BET method using the N
adsorption isotherm.  All powders showed hysteresis behavior, especially at a higher relative
pressure, and the volume of N2 adsorped on the c-In2O3(N) powder was much smaller than
that on the pr-In,O3 powders. Therefore, the c-InO3(N) powder showed small pore volume
and small SSA (1.56 m? g1), and pore volume and SSA of both the pr-In,Os powders were
much larger than that of the c-InoO3(N) powder. In addition, the difference of raw chemicals
(In(NOg3)3 or InCls) also affected the the N2 adsorption-desorption behavior and thus the
pore-size distributions were markedly different between pr-InoO3(N) and pr-In2O3(Cl)
powders. Namely, the pr-InO3(N) powder had well-developed pores mainly in the diameter
range of 10~100 nm (central pore diameter: ca. 30 nm), while the pr-In2O3(Cl) powder had
well-developed pores in the diameter less than 10 nm. As a result, the SSA of the

pr-In203(Cl) powder (30.5 m? g1) was larger than that of the pr-In2O3(N) powder (19.1 m?



g%

Microstructure of pr-InOs and c-In,O3(N) powders was investigated by SEM and TEM.
Figure 7 shows SEM photographs of pr-In2Os and c-In2O3(N) powders. Figures 8, 9 and 10
show TEM photographs of pr-In203 and c-In203(N) powders, respectively. Morphology of
the c-1n203(N) powder was roughly-spherical with ca. 100~700 nm in diameter, and the TEM
observation indicated that the bulk was relatively dense. Assuming that the density of In2Os
crystal is 7.180 g cm™ [29] and the morphology of the c-In,O3(N) powder is spherical and
dense perfectly, the geometric size which is estimated from the SSA (1.56 m? g2) is ca. 536
nm in diameter, which almost corresponds on those observed by SEM (Fig. 7(c)) and TEM
(Fig. 10). This fact supports that the bulk of the c-In,O3(N) powder was almost dense with
less pores and consisted of many crystallites (ca. 7.2 x 10° or ca. 2.5 x 108 crystallites per one
spherical particle with a diameter of 100 or 700 nm, respectively, which were estimated from
the CS value of ca. 25.9 nm).

On the other hand, morphology of the pr-In.Os powders was quite promising as gas-sensing
materials, compared with that of the c-In,O3(N) powder. The pr-In2O3(N) powder consisted
of submicron-sized spherical particles with well-developed spherical mesopores (pore
diameter: several tens of nanometers) and a small number of macropores (pore diameter: ca.
100 nm) on the spherical surface as shown in Figs. 7 (a) and 8, and the size of mesopores was
quite comparable to that which was estimated by BJH method using a N desorption isotherm
(see Fig. 6(a)). The formation of well-developed pores in the internal region of all particles
with various sizes was also confirmed by the TEM observation (Fig. 8).

The well-developed mesopores with a diameter of several tens of nanometers seemed to
reflect the morphology of the PMMA microspheres in the precursor solution, but the pore size
indicated a large shrinkage of voids originating from the PMMA microspheres with a

diameter of ca. 60 nm and the morphology of the pores was different from original spherical



shape of PMMA microspheres, probably due to the abrupt and simultenous decomposition of
oxide precursors and PMMA microspheres in precursor mists at elevated temperatures and
successive sintering of In2Os crystallites. In addition, each oxide wall among the pores were
constructed with meso-sized primary particles connected continuously (i.e., crystallites
partially sintered each other), as shown in Fig. 8(c). The size of the primary particles which
was confirmed from TEM photographs was roughly comparable to the CS value estimated
from the XRD spectrum (Fig. 5(a)), but it was not uniform and was distributed in the range of
15~40 nm. The nanopores with a diameter of less than 10 nm, which were confirmed in Fig.
6(b), seem to be formed among such primary particles.

On the other hand, the morphology of the pr-In.O3(CI) powder was quite different from that
of the pr-In.O3(N) powder, although the difference in the preparation method was only raw
chemicals (InClz or In(NOs)s). The pr-In203(Cl) powder consisted of many meso-sized
particles with a diameter of less than 30 nm and a few submicron-sized dense spherical
particles, as shown in Figs. 7(b) and 9. It was confirmed that the dense spherical particles
consisted of the meso-sized particles as shown in Fig. 9 (b-i). The non-uniform diameter of
meso-sized particles (ca. 15~40 nm) was almost similar to those of the pr-InoO3(N) powder,
and it was also roughly comparable to the CS value estimated from the XRD pattern (Fig.
5(b)). In addition, they were in the form of small agglomerates consisting of a few
meso-sized particles partially sintered each other. This microstructure of the pr-In2O3(Cl)
powder resulted in small pore volume in the diameter range of 10~100 nm and large pore
volume in the diameter range of less than 10 nm (see Fig. 6(b)), and the well-developed pores
with a diameter of less than 10 nm provides relatively large SSA (30.5 m? g%) in comparison
with that of the pr-In203(N) powder (19.1 m? g1), while the CS value of the pr-In,O3(Cl)
powder was slightly smaller than that of the pr-In2Os(N) powder (see Fig. 5).

These results show that the PMMA microspheres synthesized by this ultrasonic-assisted
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polymerization technique can be effectively utilized as a template to prepare attractive
gas-sensing materials with well-developed porous structure, small CS and large SSA. In
addition, we have confirmed that their microstructure was hardly affected by the post

annealing at elevated temperature for gas-sensor fabrication (550°C) for 5 h.

3.2 NO2-sensing properties of pr-1n203 and c-1n203(N) sensors

Figure 11 shows SEM photographs of cross-section of pr-In2Os and c-In2O3(N) sensors.
Many spherical particles with different diameters (ca. 0.2~2.0 um) shown in Figs. 7(a) and 8
were stacked in the pr-In2Os(N) layer, while meso-sized particles shown in Figs. 7(b) and 9
accumulated in the pr-In203(Cl) layer uniformly. The thickness of the pr-In2O3(N) layer (ca.
8.9 um) was comparable to that of the pr-In,O3(Cl) layer (ca. 8.6 um). The c-In203(N) layer
consisted of spherical particles with different diameters (ca. 0.2~1.0 um) shown in Fig. 7(c)
and 10. The thickness of the c-In2O3(N) layer (5~6 um) was thinner than those of the
pr-In203 layers, while the roughness of the c-In2O3(N) layer was relatively large than those of
the pr-In2O3 layers. The thickness and roughness of the oxide layers were not exactly the
same among all the sensors, but these differences can be considered within an allowance for
valid comparisons of the NO.-sensing properties of all the sensors and surveys on the
microstructural effects of pr-In2Oz and c-1n2O3(N) powders on the sensing properties.

Figure 12 shows response transients of pr-In,O3z and c-1n203(N) sensors to NO2 (1.0 and 10
ppm) balanced with air at 200~400°C. Figures 13 and 14 show operating temperature
dependence of response to NO2 (1.0 and 10 ppm), and response and recovery times of
pr-In203 and c-In203(N) sensors in air, respectively. The resistance of the c-In203(N) sensor
was much larger than those of the pr-In2Oz sensors in the whole temperature range, as shown
in Fig. 12. The magnitude of responses to both 1.0 ppm and 10 ppm NO: of the pr-In.Os

sensors was extremely large at lower temperatures, but it decreased monotonically with an
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increase in the operating temperature. In addition, the magnitude of NO responses were
hardly dependent on the morphological difference between pr-In.O3(N) and pr-1n.O3(Cl) .
The magnitude of response to 10 ppm NO; of the c-In,O3(N) sensor was comparable to those
of the pr-In,0O3 sensors at higher temperatures (over 300°C), while the c-In2O3(N) sensor
showed much lower response to 10 ppm NO: than those of the pr-In2Os sensors at lower
temperature (below 300°C). However, the magnitude of response to low concentration of
NO:z (1.0 ppm) of the c-In203(N) sensor was larger than those of of the pr-In.O3z sensors at
higher temperatures (over 300°C), since the magnitude of the response to NO, of the
c-In203(N) sensor showed weak NO2 concentration dependence in the whole temperature
range studied. Gurlo et al. have reported that the magnitude of NO. response (R¢/Ra) of
In2O3 powders prepared by a sol-gel method and subsequent heat-treatment at elevated
temperatures increased with an increase in the grain size measured by TEM in the grain-size
range of 5~100 nm and the In,Oz powder with a grain size of ca. 20 nm showed the medium
response (Rg/Ra to 1 ppm NO>: 10~20 at 150°C) among all sensors in air with 50% relative
humidity (RH) [30-32]. Thereafter, different InoOz powders, such as porous In;Os
microspheres prepared by hydrothremal treatment (CS: 25 nm, Rg/Ra to 10 ppm NO3: ca. 8 at
250°C in air with 40~50%RH) [33] and In.O3 nanoribbons prepared by electrospinning (CS:
18 nm, R¢/Ra to 10 ppm NO2: ca. 60 at 200°C in air with 40~50%RH) [34], have so far
investigated as an attractive NO»-sensing material. Irrespective of the presence or absence
of humidity in the measurment atmosphere and the difference in sensor structure employed
(e.g., thickness of oxide layer), it was confirmed that the pr-In2Os sensors fabricated in this
study showed relatively large response to NO: in comparison with the above-referenced
sensors fabricated with InoO3 powders with almost the same CS.

On the other hand, response and recovery speeds of the pr-In,Oz sensors were much faster

than those of the c-In2O3(N) sensor in the whole temperature range studied (Fig. 14), owing to
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the well-developed porous structure of the pr-In2Os sensors. In addition, the pr-1n2Os(N)
sensor tended to show faster response and recovery speeds than those of the pr-1n.O3(Cl)
sensor. Well-developed large pores with a diameter of 10~100 nm in the pr-In2O3(N)
powder may improve the gas diffusivity in the sensing layer.

As mentioned above, it is confirmed that the addition of PMMA microspheres to the
precursor solution and then the intorduction of porous structure in the In.O3 powders were
effective in improving the NO> response especially at low temperatures and the response and
recovery speeds in the whole temperature range studied. The results of the present study
predicts the improvement of gas sensing performance of various semiconductor metal oxides
other than In2Ogz, by the introduction of nano- and micro-porous strucuture into the powder.
The effects of pore size in InoOs powders on the gas-sensing properties are now under

investigation.

4. Conclusion

The dispersion containing PMMA microspheres was synthesized by ultrasonic-assisted
emulsion polymerization employing the emulsion polymerization employing MMA monomer,
SLS as a surfactant and ammonium persulfate as an initiator. Thereafter, pr-InoOs powders
were prepared by ultrasonic-spray pyrolysis of In(NOs)s or InCls aqueous solution containing
the synthesized PMMA microspheres as a template. The average diameter of the uniform
PMMA microspheres synthesized, which was measured by DLS, was ca. 60.2 nm. The
pr-In203(N) powder consisted of submicron-sized spherical particles with well-developed
pores (several tens of nanometers in diameter), while the pr-In,O3(CI) powder was composed
of a large number of meso-sized particles with a diameter of less than 30 nm and a few
submicron-sized dense spherical particles. On the other hand, the morphology of c-In,O3(N)

prepared by ultrasonic-spray pyrolysis of PMMA-free In(NOs)z aqueous solution as a
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reference was roughly spherical with a diameter of ca. 100~700 nm and the bulk was
relatively dense. The NO2 response of pr-In,O3 sensors was much larger than that of a
c-In203(N) sensor at lower temperatures. In addition, the response and recovery speeds of
the pr-In203 sensors were much faster than those of the c-InoO3(N) sensor, because of the

well-developed porous structure of the pr-In.O3 sensors.
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N2 adsorption-desorption isotherms and pore-size distributions of pr-InoOz and
c-In203(N) powders.

SEM photographs of pr-In.Oz and c-1n203(N) powders.

TEM photographs of pr-In,O3(N) powder.

TEM photographs of pr-In.O3(Cl) powder. Inserted photograph (b-i): a photograph
after improvement in contrast of figure (b).

TEM photographs of c-In2O3(N) powder.

SEM photographs of cross-section of pr-In.Oz and c-1n203(N) sensors.

Response transients of pr-In203 and c-In203(N) sensors to 1.0 ppm and 10 ppm NO:
balanced with air at 200, 300 and 400°C.

Operating temperature dependence of response to 1.0 ppm and 10 ppm NO of
pr-In203 and c-1n203(N) sensors in air.

Operating temperature dependence of response and recovery times of pr-In2O3 and
c-In203(N) sensors.  Open symbols mean 70% response time or 50% recovery time,
and closed symbols mean 90% response time or 90% recovery time. pr-In203(N)

sensor: O and @, pr-In203(Cl) sensor: [J and M, c-In,O3(N) sensor: /A and
A
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