128 research outputs found

    AmiGO: online access to ontology and annotation data

    Get PDF
    AmiGO is a web application that allows users to query, browse and visualize ontologies and related gene product annotation (association) data. AmiGO can be used online at the Gene Ontology (GO) website to access the data provided by the GO Consortium1; it can also be downloaded and installed to browse local ontologies and annotations.2 AmiGO is free open source software developed and maintained by the GO Consortium

    The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization.

    Get PDF
    Sorghum bicolor is a drought tolerant C4 grass used for the production of grain, forage, sugar, and lignocellulosic biomass and a genetic model for C4 grasses due to its relatively small genome (approximately 800 Mbp), diploid genetics, diverse germplasm, and colinearity with other C4 grass genomes. In this study, deep sequencing, genetic linkage analysis, and transcriptome data were used to produce and annotate a high-quality reference genome sequence. Reference genome sequence order was improved, 29.6 Mbp of additional sequence was incorporated, the number of genes annotated increased 24% to 34 211, average gene length and N50 increased, and error frequency was reduced 10-fold to 1 per 100 kbp. Subtelomeric repeats with characteristics of Tandem Repeats in Miniature (TRIM) elements were identified at the termini of most chromosomes. Nucleosome occupancy predictions identified nucleosomes positioned immediately downstream of transcription start sites and at different densities across chromosomes. Alignment of more than 50 resequenced genomes from diverse sorghum genotypes to the reference genome identified approximately 7.4 M single nucleotide polymorphisms (SNPs) and 1.9 M indels. Large-scale variant features in euchromatin were identified with periodicities of approximately 25 kbp. A transcriptome atlas of gene expression was constructed from 47 RNA-seq profiles of growing and developed tissues of the major plant organs (roots, leaves, stems, panicles, and seed) collected during the juvenile, vegetative and reproductive phases. Analysis of the transcriptome data indicated that tissue type and protein kinase expression had large influences on transcriptional profile clustering. The updated assembly, annotation, and transcriptome data represent a resource for C4 grass research and crop improvement

    Draft Nuclear Genome Sequence of the Liquid Hydrocarbon-Accumulating Green Microalga Botryococcus braunii Race B (Showa).

    Get PDF
    Botryococcus braunii has long been known as a prodigious producer of liquid hydrocarbon oils that can be converted into combustion engine fuels. This draft genome for the B race of B. braunii will allow researchers to unravel important hydrocarbon biosynthetic pathways and identify possible regulatory networks controlling this unusual metabolism

    Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome

    Get PDF
    The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant

    Multiple origins, one evolutionary trajectory: gradual evolution characterizes distinct lineages of allotetraploid "Brachypodium"

    Get PDF
    The “genomic shock” hypothesis posits that unusual challenges to genome integrity such as whole genome duplication may induce chaotic genome restructuring. Decades of research on polyploid genomes have revealed that this is often, but not always the case. While some polyploids show major chromosomal rearrangements and derepression of transposable elements in the immediate aftermath of whole genome duplication, others do not. Nonetheless, all polyploids show gradual diploidization over evolutionary time. To evaluate these hypotheses, we produced a chromosome-scale reference genome for the natural allotetraploid grass Brachypodium hybridum, accession “Bhyb26.” We compared 2 independently derived accessions of B. hybridum and their deeply diverged diploid progenitor species Brachypodium stacei and Brachypodium distachyon. The 2 B. hybridum lineages provide a natural timecourse in genome evolution because one formed 1.4 million years ago, and the other formed 140 thousand years ago. The genome of the older lineage reveals signs of gradual post-whole genome duplication genome evolution including minor gene loss and genome rearrangement that are missing from the younger lineage. In neither B. hybridum lineage do we find signs of homeologous recombination or pronounced transposable element activation, though we find evidence supporting steady post-whole genome duplication transposable element activity in the older lineage. Gene loss in the older lineage was slightly biased toward 1 subgenome, but genome dominance was not observed at the transcriptomic level. We propose that relaxed selection, rather than an abrupt genomic shock, drives evolutionary novelty in B. hybridum, and that the progenitor species’ similarity in transposable element load may account for the subtlety of the observed genome dominance

    The Peach v2.0 release: High-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity

    Get PDF
    Background: The availability of the peach genome sequence has fostered relevant research in peach and related Prunus species enabling the identification of genes underlying important horticultural traits as well as the development of advanced tools for genetic and genomic analyses. The first release of the peach genome (Peach v1.0) represented a high-quality WGS (Whole Genome Shotgun) chromosome-scale assembly with high contiguity (contig L50 214.2 kb), large portions of mapped sequences (96%) and high base accuracy (99.96%). The aim of this work was to improve the quality of the first assembly by increasing the portion of mapped and oriented sequences, correcting misassemblies and improving the contiguity and base accuracy using high-throughput linkage mapping and deep resequencing approaches. Results: Four linkage maps with 3,576 molecular markers were used to improve the portion of mapped and oriented sequences (from 96.0% and 85.6% of Peach v1.0 to 99.2% and 98.2% of v2.0, respectively) and enabled a more detailed identification of discernible misassemblies (10.4 Mb in total). The deep resequencing approach fixed 859 homozygous SNPs (Single Nucleotide Polymorphisms) and 1347 homozygous indels. Moreover, the assembled NGS contigs enabled the closing of 212 gaps with an improvement in the contig L50 of 19.2%. Conclusions: The improved high quality peach genome assembly (Peach v2.0) represents a valuable tool for the analysis of the genetic diversity, domestication, and as a vehicle for genetic improvement of peach and related Prunus species. Moreover, the important phylogenetic position of peach and the absence of recent whole genome duplication (WGD) events make peach a pivotal species for comparative genomics studies aiming at elucidating plant speciation and diversification processes
    corecore