24 research outputs found

    Negative regulation of ErbB family receptor tyrosine kinases

    Get PDF
    Receptors of the EGF receptor or ErbB family of growth factor receptor tyrosine kinases are frequently overexpressed in a variety of solid tumours, and the aberrant activation of their tyrosine kinase activities is thought to contribute to tumour growth and progression. Much effort has been put into developing inhibitors of ErbB receptors, and both antibody and small-molecule approaches have exhibited clinical success. Recently, a number of endogenous negative regulatory proteins have been identified that suppress the signalling activity of ErbB receptors in cells. These include intracellular RING finger E3 ubiquitin ligases such as cbl and Nrdp1 that mediate ErbB receptor degradation, and may include a wide variety of secreted and transmembrane proteins that suppress receptor activation by growth factor ligands. It will be of interest to determine the extent to which tumour cells suppress these pathways to promote their progression, and whether restoration of endogenous receptor-negative regulatory pathways may be exploited for therapeutic benefit

    EGFRvIV: a previously uncharacterized oncogenic mutant reveals a kinase autoinhibitory mechanism

    Get PDF
    Tumor cells often subvert normal regulatory mechanisms of signal transduction. This study shows this principle by studying yet uncharacterized mutants of the epidermal growth factor receptor (EGFR) previously identified in glioblastoma multiforme, which is the most aggressive brain tumor in adults. Unlike the well-characterized EGFRvIII mutant form, which lacks a portion of the ligand-binding cleft within the extracellular domain, EGFRvIVa and EGFRvIVb lack internal segments distal to the intracellular tyrosine kinase domain. By constructing the mutants and by ectopic expression in naive cells, we show that both mutants confer an oncogenic potential in vitro, as well as tumorigenic growth in animals. The underlying mechanisms entail constitutive receptor dimerization and basal activation of the kinase domain, likely through a mechanism that relieves a restraining molecular fold, along with stabilization due to association with HSP90. Phosphoproteomic analyses delineated the signaling pathways preferentially engaged by EGFRvIVb-identified unique substrates. This information, along with remarkable sensitivities to tyrosine kinase blockers and to a chaperone inhibitor, proposes strategies for pharmacological interception in brain tumors harboring EGFRvIV mutations.Goldhirsh FoundationNational Cancer Institute (U.S.) (CA118705)National Cancer Institute (U.S.) (CA141556)National Cancer Institute (U.S.) (U54-CA112967

    Ligand-independent degradation of epidermal growth factor receptor involves receptor ubiquitylation and hgs, an adaptor whose ubiquitin-interacting motif targets ubiquitylation by Nedd4

    No full text
    Ligand-dependent endocytosis of the epidermal growth factor receptor (EGFR) involves recruitment of a ubiquitin ligase, and sorting of ubiquitylated receptors to lysosomal degradation. By studying Hgs, a mammalian homolog of a yeast vacuolar-sorting adaptor, we provide information on the less understood, ligand- independent pathway of receptor endocytosis and degradation. Constitutive endocytosis involves receptor ubiquitylation and translocation to Hgs-containing endosomes. Whereas the lipid- binding motif of Hgs is necessary for receptor endocytosis, the ubiquitin-interacting motif negatively regulates receptor degradation. We demonstrate that the ubiquitin-interacting motif is endowed with two functions: it binds ubiquitylated proteins and it targets self-ubiquitylation by recruiting Nedd4, an ubiquitin ligase previously implicated in endocytosis. Based upon the dual function of the ubiquitin- interacting motif and its wide occurrence in endocytic adaptors, we propose a ubiquitin-interacting motif network that relays ubiquitylated membrane receptors to lysosomal degradation through successive budding events

    Conjugation to Nedd8 instigates ubiquitylation and down-regulation of activated receptor tyrosine kinases

    No full text
    When appended to the epidermal growth factor receptor ( EGFR), ubiquitin serves as a sorting signal for lysosomal degradation. Here we demonstrate that the ubiquitin ligase of EGFR, namely c-Cbl, also mediates receptor modification with the ubiquitin-like molecule Nedd8. EGF stimulates receptor neddylation, which enhances subsequent ubiquitylation, as well as sorting of EGFR for degradation. Multiple lysine residues, located within the tyrosine kinase domain of EGFR, serve as attachment sites for Nedd8. A set of clathrin coat-associated binders of ubiquitin also bind Nedd8, but they undergo ubiquitylation, not neddylation. We discuss the emerging versatility of the concerted action of ubiquitylation and neddylation in the process that desensitizes growth factor-activated receptor tyrosine kinases

    The phosphatase and tensin homolog regulates epidermal growth factor receptor (EGFR) inhibitor response by targeting EGFR for degradation

    No full text
    The phosphatase and tensin homolog (PTEN) is a tumor suppressor that is inactivated in many human cancers. PTEN loss has been associated with resistance to inhibitors of the epidermal growth factor receptor (EGFR), but the molecular basis of this resistance is unclear. It is believed that unopposed phosphatidylinositol-3-kinase (PI3K) activation through multiple receptor tyrosine kinases (RTKs) can relieve PTEN-deficient cancers from their “dependence” on EGFR or any other single RTK for survival. Here we report a distinct resistance mechanism whereby PTEN inactivation specifically raises EGFR activity by impairing the ligand-induced ubiquitylation and degradation of the activated receptor through destabilization of newly formed ubiquitin ligase Cbl complexes. PTEN-associated resistance to EGFR kinase inhibitors is phenocopied by expression of dominant negative Cbl and can be overcome by more complete EGFR kinase inhibition. PTEN inactivation does not confer resistance to inhibitors of the MET or PDGFRA kinase. Our study identifies a critical role for PTEN in EGFR signal termination and suggests that more potent EGFR inhibition should overcome resistance caused by PI3K pathway activation
    corecore