973 research outputs found

    Effect of a simulated engine jet blowing above an arrow wing at Mach 2.0

    Get PDF
    The effects of a gas jet simulating a turbojet engine exhaust blowing above a cambered and twisted arrow wing were investigated. Tests were conducted in the Langley 4-foot supersonic pressure tunnel at a Mach number of 2.0. Nozzle pressure ratios from 1 to 64 were tested with both helium and air used as jet gases. The tests were conducted at angles of attack from -2 deg to 8 deg at a Reynolds number of 9,840,000 per meter. Only the forces and moments on the wing were measured. Results of the investigation indicated that the jet blowing over the wing caused reductions in maximum lift-drag ratio of about 4 percent for helium and 6 percent for air at their respective design nozzle pressure ratios, relative to jet-off data. Moderate changes in the longitudinal, vertical, or angular positions of the jet relative to the wing had little effect on the wing aerodynamic characteristics

    Summary of External-Store Drag

    Get PDF
    The drag problems associated with the addition of external stores to airplanes are reviewed. Current analytic techniques for estimating drag penalties associated with the addition of stores in both subsonic and supersonic flight are discussed. In subsonic flight, the drag penalty caused by the addition of external stores is shown to be a function of the type of store installation. In supersonic flight, the drag is shown to be a function of the type of store installation and also of the location of the store installation with respect to the rest of the airplane components. Special store arrangements and attention to the design of the store itself can reduce the drag penalty of the store installation

    Longitudinal aerodynamic characteristics of an elliptical body with a horizontal tail at Mach numbers from 2.3 to 4.63

    Get PDF
    Longitudinal aerodynamic characteristics of a configuration consisting of an elliptical body with an in plane horizontal tail were investigated. The tests were conducted at Mach numbers of 2.3, 2.96, 4.0, and 4.63. In some cases, the configuration with negative tail deflections yielded higher values of maximum lift drag ratio than did the configuration with an undeflected tail. This was due to body upwash acting on the tail and producing an additional lift increment with essentially no drag penalty. Linear theory methods used to estimate some of the longitudinal aerodynamic characteristics of the model yielded results which compared well with experimental data for all Mach numbers in this investigation and for both small angles of attack and larger angles of attack where nonlinear (vortex) flow phenomena were present

    Aerodynamic characteristics of a supersonic cruise airplane configuration at Mach numbers of 2.30, 2.96, and 3.30

    Get PDF
    An investigation was made in the Langley Unitary Plan wind tunnel at Mach numbers of 2.30, 2.96, and 3.30 to determine the static longitudinal and lateral aerodynamic characteristics of a model of a supersonic cruise airplane. The configuration, with a design Mach number of 3.0, has a highly swept arrow wing with tip panels of lesser sweep, a fuselage chine, outboard vertical tails, and outboard engines mounted in nacelles beneath the wings. For wind tunnel test conditions, a trimmed value above 6.0 of the maximum lift-drag ratio was obtained at the design Mach number. The configuration was statically stable, both longitudinally and laterally. Data are presented for variations of vertical-tail roll-out and toe-in and for various combinations of components. Some roll control data are shown as are data for the various sand grit sizes used in fixing the boundary layer transition location

    A wind-tunnel investigation of sonic-boom pressure distributions of bodies of revolution at Mach 2.96, 3.83, and 4.63

    Get PDF
    Measurements of sonic boom pressure distribution of bodies of revolution at Mach 2.96, 3.83, and 4.63 in Unitary Plan wind tunne

    Surface pressure data for a supersonic-cruise airplane configuration at Mach numbers of 2.30, 2.96, 3.30

    Get PDF
    The tabulated results of surface pressure tests conducted on the wing and fuselage of an airplane model in the Langley Unitary Plan wind tunnel are presented without analysis. The model tested was that of a supersonic-cruise airplane with a highly swept arrow-wing planform, two engine nacelles mounted beneath the wing, and outboard vertical tails. Data were obtained at Mach numbers of 2.30, 2.96, and 3.30 for angles of attack from -4 deg to 12 deg. The Reynolds number for these tests was 6,560,000 per meter

    Monoclinic phase in the relaxor-based piezo-/ ferroelectric Pb(Mg1/3_{1/3}Nb2/3)O3_{2/3})O_3-PbTiO3_3 system

    Get PDF
    A ferroelectric monoclinic phase of space group CmCm (MAM_A type) has been discovered in 0.65Pb(Mg1/3_{1/3}Nb2/3)O3_{2/3})O_3-0.35PbTiO3_3 by means of high resolution synchrotron X-ray diffraction. It appears at room temperature in a single crystal previously poled under an electric field of 43 kV/cm applied along the pseudocubic [001] direction, in the region of the phase diagram around the morphotropic phase boundary between the rhombohedral (R3m) and the tetragonal (P4mm) phases. The monoclinic phase has lattice parameters a = 5.692 A, b = 5.679 A, c = 4.050 A and β\beta = 90.1590.15^{\circ}, with the bm_m-axis oriented along the pseudo-cubic [110] direction . It is similar to the monoclinic phase observed in PbZr1x_{1-x}Tix_xO3_3, but different from that recently found in Pb(Zn1/3_{1/3}Nb2/3)O3_{2/3})O_3-PbTiO3_3, which is of space group PmPm (MCM_C type).Comment: Revised version after referees' comments. PDF file. 6 pages, 4 figures embedde

    CVM studies on the atomic ordering in complex perovskite alloys

    Full text link
    The atomic ordering in complex perovskite alloys is investigated by the cluster variation method (CVM). For the 1/3\{111\}-type ordered structure, the order-disorder phase transition is the first order, and the order parameter of the 1:2 complex perovskite reaches its maximum near x=0.25. For the 1/2\{111\}-type ordered structure, the ordering transition is the second order. Phase diagrams for both ordered structures are obtained. The order-disorder line obeys the linear law.Comment: 10 pages, 6 figure

    Phase diagram of the ferroelectric-relaxor (1-x)PbMg(1/3)Nb(2/3)O3-xPbTiO3

    Get PDF
    Synchrotron x-ray powder diffraction measurements have been performed on unpoled ceramic samples of (1-x)PbMg(1/3)Nb(2/3)O3-xPbTiO3 (PMN-xPT) with 30%<= x<= 39% as a function of temperature around the morphotropic phase boundary (MPB), which is the line separating the rhombohedral and tetragonal phases in the phase diagram. The experiments have revealed very interesting features previously unknown in this or related systems. The sharp and well-defined diffraction profiles observed at high and intermediate temperatures in the cubic and tetragonal phases, respectively, are in contrast to the broad features encountered at low temperatures. These peculiar characteristics, which are associated with the monoclinic phase of MC-type previously reported by Kiat et al and Singh et al., can only be interpreted as multiple coexisting structures with MC as the major component. An analysis of the diffraction profiles has allowed us to properly characterize the PMN-xPT phase diagram and to determine the stability region of the monoclinic phase, which extends from x= 31% to x= 37% at 20 K. The complex lansdcape of observed phases points to an energy balance between the different PMN-xPT phases which is intrinsically much more delicate than that of related systems such as PbZr(1-x)TixO3 or (1-x)PbZn(1/3)Nb(1/3)O3-xPbTiO3. These observations are in good accord with an optical study of x= 33% by Xu et al., who observed monoclinic domains with several different polar directions coexisting with rhombohedral domains, in the same single crystal.Comment: REVTeX4, 11 pages, 10 figures embedde

    Development of Ferroelectric Order in Relaxor (1-x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3

    Full text link
    The microstructure and phase transition in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3 (PMN) and its solid solution with PbTiO3 (PT), PMN-xPT, remain to be one of the most puzzling issues of solid state science. In the present work we have investigated the evolution of the phase symmetry in PMN-xPT ceramics as a function of temperature (20 K < T < 500 K) and composition (0 <= x <= 0.15) by means of high-resolution synchrotron x-ray diffraction. Structural analysis based on the experimental data reveals that the substitution of Ti^4+ for the complex B-site (Mg1/3Nb2/3)^4+ ions results in the development of a clean rhombohedral phase at a PT-concentration as low as 5%. The results provide some new insight into the development of the ferroelectric order in PMN-PT, which has been discussed in light of the kinetics of polar nanoregions and the physical models of the relaxor ferroelectrics to illustrate the structural evolution from a relaxor to a ferroelectric state.Comment: Revised version with updated references; 9 pages, 4 figures embedde
    corecore