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SUMMARY 

A n  i nves t iga t ion  was conducted i n   t h e  Langley  Unitary  Plan Wind Tunnel to deter-  
mine longi tudinal   aerodynamic  character is t ics  of a configurat ion  consis t ing of an 
e l l i p t i c a l  body with  an  in-plane  horizontal   ta i l .  The tests were conducted a t  Mach 
numbers  of 2.3, 2.96,  4.0,  and  4.63. 

I n  some cases ,   the   configurat ion  with  negat ive tail deflect ions  yielded  higher  
values of maximum l i f t - d r a g  ra t io  than  did  the  configuration  with  an  undeflected 
t a i l .   T h i s  was due t o  body upwash ac t ing  on t h e   t a i l  and  producing an add i t iona l  
l i f t  increment   with  essent ia l ly  no drag  penalty.  

Linear  theory  methods  used  to  estimate some  of the  longitudinal  aerodynamic 
c h a r a c t e r i s t i c s  of the model y i e lded   r e su l t s  which  compared w e l l  with  experimental 
d a t a   f o r   a l l  Mach numbers i n  t h i s   i nves t iga t ion  and fo r   bo th   ma l l   ang le s  of a t tack  
and larger   angles  of a t t ack  where nonlinear  (vortex)  f low phenomena were present .  

INTRODUCTION 

For a number of years  the  National  Aeronautics and  Space  Administration  has  been 
invest igat ing  the  aerodynamic  character is t ics  of bodies   wi th   e l l ip t ica l   c ross   sec-  
t ions.   Included i n  these   inves t iga t ions  were f ami l i e s  of bodies   with  var ia t ions i n  
e l l i p t i c i t y   ( r e f .  1) and body-tail  combinations.  These  body-tail  combinations were 
e i ther   research   conf igura t ions   ( re f .  2 )  o r  missile concepts   ( re fs .  3 and 4 ) .  An 
e l l i p t i c a l  body,  with i ts  major axis   in   the  horizontal   p lane,   has   several   advantages 
over a body  of revolut ion.  These  advantages  include more volume f o r  a g iven   ver t ica l  
dimension  or,  conversely, a smaller  vertical   dimension  for a given volume. This 
smaller  vertical   dimension may be  used to   produce  missi le   configurat ions  that   are  
more adaptable  to  conformal  carriage on aircraf t .   In   addi t ion,   the   planform of a 
body with  an e l l i p t i c a l   c r o s s   s e c t i o n   p r o v i d e s  a more e f f i c i e n t   l i f t i n g   s u r f a c e   t h a n  
a body of c i rcu lar   c ross   sec t ion   (wi th   the  same a rea   d i s t r ibu t ion )  , and may reduce 
the wing size  requirements  €or a cruise   type missile o r  a hypersonic  interceptor.  
The e l l i p t i c a l  body a l so   has   g rea t e r   l a t e ra l  and d i r e c t i o n a l   s t a b i l i t y ,  which may be 
u t i l i zed   in   conf igura t ion   des ign .  

A s  p a r t  of th i s   cont inuing   inves t iga t ion  of bodies   wi th   e l l ip t ica l   c ross   sec-  
t i ons ,  a test was conducted i n  the  Langley  Unitary  Plan Wind Tunnel a t  Mach numbers 
from  2.3 t o  4.63 of a model w i th   an   e l l i p t i ca l   c ros s - sec t ion  body with an in-plane 
h o r i z o n t a l   t a i l .  The purpose of the  wind-tunnel test  was to   obtain  data  on a simple 
body-tail   configuration  to  provide  an  insight  into  the  fundamental   longitudinal  aero- 
dynamic c h a r a c t e r i s t i c s  of e l l ip t ica l   body- ta i l   combina t ions .  The use of an  in-plane 
hor izonta l  t a i l  i n   c o n t r a s t   t o  tri-tail and quad-tail  arrangements of some e a r l i e r  
inves t iga t ions   a ids   in   the   de te rmina t ion  of body- ta i l   e f fec ts  by el iminat ing  the 
mutual  interference  between  the tails. 

The theo re t i ca l   l ong i tud ina l  aerodynamic c h a r a c t e r i s t i c s  of the  body-tail  con- 
f igu ra t ion  w e r e  also  obtained,  using  various  l inear  theory  techniques.   These  tech- 
niques, which a re   genera l ly   cons idered   va l id   in   the  Mach number range  from  1.3 
to  approximately  3.0,  have  been  used  with some success up t o  Mach number 4.63 



( r e f .  5 ) .  One of the  purposes of t h i s   i n v e s t i g a t i o n  w a s  to explore t h e   a p p l i c a b i l i t y  
of these   l inear  methods to th i s   type  of c o n f i g u r a t i o n   a t  Mach numbers above 3 . O .  

The wind-tunnel tests and t h e o r e t i c a l   p r e d i c t i o n s  were conducted  for Mach numbers 
of 2.3, 2 .96 ,  4.0, and 4.63  a t  a nominal  Reynolds number of 6.56 X 10 6 Per meter 
( 2 . 0  x lo6  per  ’foot) .  

SYMBOLS 

L i f t  and  drag  data are referenced  to   the  s tabi l i ty-axis   system  while  moment da t a  
are   referenced to the  hody-axis  system. The moment re ference   cen ter   for   the  model is  
located 49.81 cm (19 .61  i n . )  from the model nose on the model horizontal   reference 
l i n e .  

The model was designed  and b u i l t  and da ta  were reduced  using U.S. Customary 
Units. Data a re   p resented   in  S I  Units w i t h  U.S. Customary Units   in   parentheses .  

A cross-section  area 

%ax maximum cross-sect ion  area,  108.13 cm2 ( 16.76 i n 2 )  

cD 
d rag   coe f f i c i en t ,  - Drag 

qs 

C base  drag  coeff ic ient ,  Base  drag 
D,b qs 

‘D, C 
chamber drag   coef f ic ien t ,  Chamber drag 

qs 

C 
D , f  

D,w 

sk in- f r ic t ion   d rag   coef f ic ien t  

wave d rag   coe f f i c i en t  C 

‘D,o 

cL 

= c   + c  
D,w D,f 

l i f t   c o e f f i c i e n t ,  - L i f t  
qs 

cL 
l i f  t-curve  slope a t  a = 0 ,  per  deg 

a 

‘m 
pitching-moment  coeEficient, P i tch ing  moment 

qsc 

drag  increment due to   add i t ion  of t a i l  

kD/ ACL drag due t o   l i f t   f a c t o r  2 

AcL 

acm’ac, 

lift increment due to   add i t ion  of tail 

longi tudina l   s tab i l i ty   parameter  a t  CL = 0 
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E 

L/D 

M 

q 

S 

X 

Xmax 

Y 

a 

6, 

pitching-moment e f f ec t iveness  of hor izonta l  tails a t  CL = 0, per cleg 

reference  chord, 19.96 cm ( 7 . 8 6  in.  ) 

l i f   t - d r a g  ratio 

Mach number 

free-stream dynamic pressure,  Pa ( p s f )  

wing reference area, 810.115 cm2 (125.568 i n 2 )  

d i s t ance  from model nose, cm ( in .  1 

maximum x d i s t ance  from  nose, 82.14  cm (32 .34  i n . )  

spanwise  distance  from  centerline,  cm ( i n . )  

angle  of a t t ack ,  deg 

t a i l  de f l ec t ion   ang le   (pos i t i ve   t r a i l i ng  edge  down),  deg 

subscr ip t :  

max  maximum 

MODELS AND INSTRUMENTATION 

A sketch of the model is  shown i n   f i g u r e  1 and  photographs of the model i n s t a l l e d  
in   the   Uni ta ry   P lan  Wind Tunnel are shown i n   f i g u r e  2. The planform of the body is  
defined by the  following  equations: 

0.3(K y + 2 . 0 )  - 1 . 2  

K 

2 

x,  leading  edge = 
1 

1 

where K1 equals 1.077 for   dimensions  in   cent imeters   and 2.737 fo r   d imens ions   i n  
inches. The area d i s t r i b u t i o n   f o r   t h e  body is defined by the  equat ion 
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where K2 i s  1.161 for   d imens ions   in   cen t imeters  and 7.491 for   d imens ions   in  
inches. The equation for t h e . a r e a   d i s t r i b u t i o n   a p p l i e s  for  the  region x = 0 t o  
x = 55.756 cm (21.951 in.  ). A t  t h i s   p o i n t ,   t h e  slope of the  area d i s t r i b u t i o n  is  
zero and the   t heo re t i ca l  area d is t r ibu t ion   remains   cons tan t  to the  end of the body. 
However, the  outboard part  of the  model body a f t  of x = 58.49 cm (23.03 in. ) w a s  
modified to provide  an  a t tachment   region  for   the  horizontal  t a i l ,  r e s u l t i n g   i n  a 
decrease i n   t h e  body cross-sect ion area, as shown in  the  nondimensional ized normal 
area d i s t r i b u t i o n   i n   f i g u r e  3. The hor izonta l  t a i l  attachment  region on the model 
body w a s  contoured so t h a t ,  as the   hor izonta l  tail w a s  rotated about i t s  swept hinge 
l ine,   the  inboard  edge of the  t a i l  maintained  contact   wi th  the body side u n t i l   t h e  
t a i l  w a s  de f l ec t ed  more than  approximately 4O, when it began to unport. The hori-  
zonta l  t a i l  had 4-percent- thick  c i rcular-arc   sect ions.  

The base region of the  model body w a s  recessed 2.54 cm (1 in.  ) as shown i n   f i g -  
ure  1 to provide a quiescent   reg ion   for   t ak ing  base pressure  measurements. Base 
pressure  w a s  measured by four  tubes loca ted   in   the   recessed  area, close to, but   no t  
touching,  the model base. Chamber pressure  w a s  measured by two t ubes   l oca t ed   i n   t he  
balance-st ing  cavi ty .  The s i x   p r e s s u r e  tubes were a t tached  to the  model support  
s t i n g  and routed   to   p ressure   t ransducers  which were loca ted   ou ts ide   the   tunnel  tes t  
sect ion.  

Forces and moments were measured by means of a six-component  strain-gage  balance 
which w a s  contained  within  the model and  connected by a suppor t ing   s t i ng   t o   t he  
permanent  model-actuating  systems  in  the  tunnel. 

TEST CONDITIONS AND CORRECTIONS  TO DATA 

Tests were conducted i n   t h e  Langley  Unitary  Plan Wind Tunnel a t  Mach numbers of 
2.3,  2.96, 4.0,  and 4.63. The tests were conducted  under the fol lowing  condi t ions of 
pressure,   temperature,  and  Reynolds number: 

Mach number pressure  temperature 

2.30 

175 5275 I 352.56 252.568 4.63 
i75 352.56 3939 188.600 4 .OO 
150  338.71 2046 97.963 2.96 
150 338.71 1526 73.065 

1 Reynolds number I 
~ p e r  meter I per f o o t  1 

~~ 

I I 

6.56 x lo6 2.0 x lo6 
6.20 1 e 8 9  
6.56 

2.0 6.56 
2.0 

Reynolds number f o r   t h e  test  a t  M = 2.96 w a s  about  5 percent   lower   than  for   the 
remainder of the  test  Mach numbers due to an   inadver ten t   se lec t ion  of an   i nco r rec t  
s tagnat ion  pressure.  The on ly   e f f ec t   t h i s   shou ld  have  on the   da ta  is a n   i n c r e a s e   i n  
measured  drag  for Mach number 2.96. The i n c r e a s e   i n  CD w a s  estimated to be between 
0.0001 and 0.0002. 

The loca t ion  of the t r a n s i t i o n  from laminar to  turbulent  boundary-layer f l o w  
over the model w a s  f i xed  by bands of NO. 35 c a r b o r u n d h   g r i t .  One band was located 
3.05 cm ( 1.20 in. 1 from the  body apex  around  the  nose  and  others were 1.40 cm 
(0.55 i n .  ) back i n  a streamwise d i r e c t i o n  from the  leading  edge of the hor i zon ta l  
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t a i l .  The requi red   s ize  and loca t ion  of the   t rans i t ion   bands  w e r e  determined by the 
method of reference  6.  

Correct ions were made to  the  data  for  wind-tunnel  f low  angularity,   balance com- 
ponent   in te rac t ions ,   and   s t ing   def lec t ions  due t o  model loads.  Base and  chamber da ta  
were acquired  simultaneously  with a l l   f o r c e  data and  the  force  data were ad jus ted  to  
correspond  to  free-stream s ta t ic  pressure  act ing  over   the  base and  chamber area. 
Typical  base-pressure  drag  increments are shown i n   f i g u r e  4. The base-pressure  drag 
increment is essent ia l ly   invar ian t   wi th   angle  of a t t a c k   a t   a l l  Mach numbers except  
M = 2.3. where the  base-pressure  drag  increases   for   angles  of a t tack  above 5 O  .. Typi- 
cal chamber-pressure  drag  increments are shown i n   f i g u r e  5, and  behave i n  much the  
same manner as  the  base-pressure  drag  increments.  

RESULTS AND DISCUSSION 

The  combined base-pressure  and  chamber-pressure  drag  corrections  comprise a 
s i g n i f i c a n t   p a r t  of the minimum drag of the model,  accounting  for  over 50 percent  
of  the minimum drag a t  M = 2.3 and  about 36 percent  of the  minimum drag a t  
M = 4.63. The l i f   t - d r a g   r a t i o s   f o r   t h e  model a re   thus   cons iderably   l a rger  as a 
r e s u l t  of the  base-pressure and chamber-pressure  drag  corrections. The magnitude 
of the  base-pressure  and  chamber-pressure  drag  corrections is  not   surpr is ing  s ince 
there  is  very l i t t l e  body closure on the  model (see f ig .   3 ) .  Although t h i s  may 
appear   unrea l i s t ic  from a configurat ion  s tandpoint ,  it should be recognized  that  
much of the  base  area would be  required  to accommodate a propulsion  exhaust  system. 

The e f f e c t s  of t he   unde f l ec t ed   t a i l  on t h e   l i f t ,   d r a g ,  and  pitching-moment  char- 
a c t e r i s t i c s  of the model are shown i n   f i g u r e  6. The nonlinear  behavior  of  the body 
l i f t  curve,  with a pronounced  break a t  about 4 O ,  is  caused by the  formation of upper 
su r face   vo r t i ce s  which g e n e r a t e   a d d i t i o n a l   l i f t  on the body. The addi t ion  of the 
t a i l   i nc reases   t he   s lope  of t h e   l i f t   c u r v e  and a t tenuates   the   nonl inear i ty  due to the  
vortex  formation.  This  can  be  attr ibuted  to a reduct ion  in   vortex  s t rength  over   the 
a f t  part  of the body,  due to  the  presence of the t a i l ,  and flow separat ion from the  
t a i l   a t   h i g h e r   a n g l e s  of a t tack .  

For the  moment center  of t h i s   i nves t iga t ion ,   t he  body alone is unstable  a t  a l l  
Mach numbers;  however,  pitch-down occur s   a t   abou t  4 O  angle of a t t a c k ,   i n d i c a t i n g   t h a t  
the r e s u l t a n t  of t h e   a d d i t i o n a l   l i f t  shown  by the body l i f t  curve is  a f t  of the  
moment center .  The addi t ion  of the   hor izonta l  t a i l  r e s u l t s   i n  a s t ab le  or neu t r a l ly  
s tab le   conf igura t ion  a t  CL = 0; however, t h e   e f f e c t  of the tail on the  body v o r t i c e s  
reduces  the  vortex l i f t  on t h e   a f t   p a r t  of the body,  producing  pitch-up a t  about 4 O  
angle of attack. 

The e f f e c t s  of hor izonta l  tail de f l ec t ions  on the  static longi tudina l  aero- 
dynamic c h a r a c t e r i s t i c s  of the  body-tai l   configurat ion  are  shown i n   f i g u r e  7 .  The 
i n c r e m e n t s   i n   l i f t  and p i t ch ing  moment due to tail deflect ion  tend to vary  propor- 
t i o n a l l y  to  the  amount of t a i l  def lec t ion  and to decrease  with  increasing Mach 
number. Minimum drag  decreases   with  increasing Mach number and  increases  with 
increas ing  t a i l  def lec t ion .  

Of p a r t i c u l a r   i n t e r e s t  is t h e   f a c t   t h a t   f o r  Mach number 2.3, negative tail 
def l ec t ions  up to -6O r e s u l t   i n  (L/DImax g rea te r   than   for   the   conf igura t ions   wi th  
undeflected tails. This  effect   can  be  observed up to  Mach number 4.0 f o r  smaller 
t a i l  def lec t ions .  Thus, the   pos i t ive   increment   in  Cm f o r  trimming  the  configura- 
t i o n  is accompanied by an   i nc rease   i n  (L/D)max. 
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The incremental  l i f t  due to the   hor izonta l  tail i s  shown i n   f i g u r e  8. These 
data were ex t rac ted  from f i g u r e s  6 and 7. The solid l i n e  shows t h e   l i f t   i n c r e m e n t  
between the body and body-tail   with the tail undeflected.  The dashed l i n e  shows the 
l i f t  increment  between  the body and body-tail  where a = -6,, t h a t  is, with  the t a i l  
a l igned   wi th   the   f ree  stream. The l i f t  due to the tail a t  a = -6, i s  due to the 
body upwash ac t ing  on the  tail and is  respons ib le   for  the i n c r e a s e s   i n  (L/D),, 
shown i n   f i g u r e  7 for   the   conf igura t ions   wi th   def lec ted  tails. The r educ t ion   i n  the 
tail l i f t   s l o p e   ( t h e   s o l i d   l i n e   i n   f i g .  8) a t  the  higher  angles of a t t ack   con t r ibu te s  
to   the  body-tai l   p i tch-up shown i n   f i g u r e s  6 and 7, and is  probably due to flow  sepa- 
r a t ion  on t h e   t a i l .  

Drag  increments ACD due to the  tail are shown i n   f i g u r e  9.  The v a r i a t i o n  
i n  E,, for  6, = 0 tends to be  parabol ic  a t  the  lower  angles of a t tack  but   a lmost  
l i n e a r  a t  the  higher   angles  of a t t ack ,   r e f l ec t ing   t he  loss of tail l i f t  shown i n  
f igu re  8. A t  a = 0 ,  the drag  increment is composed of t a i l  sk in- f r ic t ion   d rag  
p lus   t he  change i n  wave drag due to   the   addi t ion  of the  tail. A t  a = -6 there  
i s  e s s e n t i a l l y  no drag  associated  with the l i f t  generated by the t a i l .   T h l s   r e f l e c t s  
the f a c t   t h a t   w h i l e   t h e   t a i l  i s  a t  an  effect ive  angle  of a t t ack  due to the body up- 
wash f i e l d ,   t h e  tail normal-force  vector is pe rpend icu la r   t o   t he   f r ee   s t r eam  ( tha t  
is, there  is  no induced   drag   in   the   t rad i t iona l   sense  of the  normal-force  vector 
t i l t ed  i n  the   d rag   d i rec t ion) .  

t! 

Comparison  With  Theory 

As s t a t ed   i n   t he   In t roduc t ion ,  one of the  purposes of t h i s   i n v e s t i g a t i o n  was t o  
determine  the  appl icabi l i ty  of some of the l inear   theory   ana ly t ic  methods i n  estimat- 
ing  the  aerodynamic  character is t ics  of an e l l i p t i c a l  body i n  combination w i t h  a hori-  
zonta l  tail. Two techniques were used i n   e v a l u a t i n g   t h e   z e r o - l i f t  wave drag of the 
model. The f a r - f i e l d  method ( r e f .  7) uses  the  supersonic   area  rule  and s lender  body 
theory,  with  the  assumption that the Mach cone o r i g i n a t i n g   a t   t h e  apex of a component 
w i l l  n o t   i n t e r s e c t   t h a t  component elsewhere.  Thus,  the  assumption of the  theory 
would  be v i o l a t e d   f o r  a s lender  body a t  a su f f i c i en t ly   h igh  Mach number,  and the 
magnitude of e r r o r  would be  expected  to  increase  as  the Mach number increases .  

The second  technique is  known as   the   near - f ie ld  wave-drag  program, desc r ibed   i n  
reference 8. I n   t h i s  program,  thickness  pressures  are  calculated  for  various compo- 
nents  and in tegra ted   to   p rovide  component wave drag,  and t h e i r   e f f e c t  on o ther  compo- 
nents i s  calculated.   Although  there are no geometric restraints p e c u l i a r   t o   t h e  
method, the  assumptions  and  l imitations of l inear   theory  still apply. 

Skin-fr ic t ion  drag w a s  ca lcu la ted  by the method of  reference 9 and  added to  the  
e s t ima tes   fo r   ze ro - l i f t  wave drag. The r e s u l t s   a r e  shown with  experimental data i n  
f igu re  10. 

The f a r - f i e l d  method estimates  agree  very w e l l  with  the  experimental  data a t  
M = 2.3 and  2.96. A s  expected,  these estimates are   in   increasingly  poor   agreement  
above M = 2.96. The near-f ie ld  method s l igh t ly   overpredic t s   the   d rag  a t  Mach number 
2.3 but  shows  good agreement  with  the  experimental  data a t   t h e   o t h e r  Mach numbers. 

Some of the o ther   longi tudina l   aerodynamic   charac te r i s t ics  of the model can  be 
estimated by us ing   the   l i f t ing   sur face   eva lua t ion  method  of reference 10. This 
method, a lso  based on l inear   theory ,   ca lcu la tes   the  zero-volume p res su re   d i s t r ibu t ion  
on the   conf igura t ion   for  a l i f t i ng   cond i t ion ,   i n t eg ra t e s   t he   p re s su res ,  and  using 
superposi t ion  techniques,   predicts   drag due t o  lift, l i f t ,  and  pitching-moment 
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cha rac t e r i s t i c s   fo r   t he   con f igu ra t ion .  A comparison  between  the  theoretical  aero- 
dynamic c h a r a c t e r i s t i c s  and the  experimental  data i s  shown i n   f i g u r e  11. In  con- 
s t ruc t ing   the   theore t ica l   d rag   po lars ,   the   near - f ie ld  wave-drag values  were used for 
a l l  Mach numbers. The agreement  between  theory  and  experiment  for  the l i f t  and  drag 
da ta  is  except ional ly  good. The discrepancy  in  the d r a g   p o l a r s   a t  M = 2.3 i s  
pr imari ly  due t o   t h e   e r r o r   i n   p r e d i c t i n g   z e r o - l i f t  wave drag. The s t a b i l i t y   l e v e l  of 
the  configurat ion is  consis tent ly   overpredicted  and  the  theoret ical  method cannot 
predict   the   pi tch-up.  

A Comparison  between  theory  and  experiment f o r  some longi tudinal   parameters  as a 
function of Mach number is shown i n   f i g u r e  12. The l i f t ing   sur face   eva lua t ion   'p ro-  
gram w a s  a lso  used to es t imate   the   e f fec t  of tail def lec t ions .  The tail ef fec t ive -  
ness  parameter aCm/a6,, which i s  e s s e n t i a l l y  a measure  of  the amount of C, 
generated by tail def lec t ions ,  shows p a r t  of t h e   r e s u l t s  of tha t   eva lua t ion .  

The agreement  between  theory and  expe  iment f o r   t h e  t a i l  e f f ec t iveness  param- 5 e ter ,   the   d rag-due- to- l i f t   fac tor  ACD/ACL , and  the  l i f t -curve  s lope C is q u i t e  

good over  the Mach number range. The long i tud ina l   s t ab i l i t y   pa rame te r ,   a s   p rev ious ly  
mentioned, is consis tent ly   overpredicted.   This   error  is  perhaps  not as s i g n i f i c a n t  
as it may appear  since it represents  an error i n  t he   p red ic t ion  of the   cen ter  of l i f t  
of  about 2 percent  based on the   overa l l   l ength  of the  configuration. 

La 

Linear  theory  methods would not  normally  be  expected  to  produce good r e s u l t s  
where there   are   s ignif icant   nonl inear   f low  propert ies   such as the  upper  surface 
vo r t i ce s  on the body of th i s   conf igura t ion .  However, the   addi t ion  of the   hor izonta l  
ta i l   apparent ly   modif ied  the  f low such t h a t   t h e   l i f t  and drag behaved i n  a nearly 
l inear  fashion.  Although M = 3.0 is generally  considered  to  be  the  upper l i m i t  
f o r   l i nea r   t heo ry  methods, fo r   t h i s   con f igu ra t ion   t he  methods a re   appl icable  up t o  
M = 4.63, with  the  exception of t he   f a r - f i e ld  wave-drag  method. 

Flow Visua l iza t ion  

Several   techniques  for  f low  visualization are used i n   t h e  Langley  Unitary  Plan 
Wind Tunnel  and  three of these  techniques were  used i n  t h i s   i n v e s t i g a t i o n  to obtain 
pho tographs   t o   a id   i n   i n t e rp re t ing   t he  flow  over  the  model.  These  included  schlieren 
photographs,  to  observe  the shock wave system  generated by the model; f l uo rescen t  
oil-flow  photographs, t o  determine the   sur face   f law  charac te r i s t ics   over   the  model; 
and  vapor-screen  photographs,   to  observe  the  f low  field  about  the model. Examples of 
these  photographs are presented   in   f igure  13 fo r   ang le s  of a t tack  of 4 O  and 8 O .  

The schlieren  photograph a t  the  top of the   f igure  is a s ide  view of the model 
taken  through  the  vertical   bars  supporting  the  tunnel  sidewall  windows. The oi l - f low 
photograph in   the  middle  of t he   f i gu re  shows a top view taken by two cameras mounted 
between  the  vertical   bars.  The vapor-screen  photographs a t  the  bottom of the   f i gu re  
are views  from  the  upper l e f t   r ea r   quadran t .  

In  the  oil-flow  photographs,  the upper   surface  vort ices ,  weakly developed a t  
a = 4 O ,  are indica ted  by the  dark  streaks  running from near  the  nose  to  the  back  end 
of the body. The dark  s t reaks are caused by the h i g h e r   v e l o c i t y   a i r  of the  vortex 
wiping  the o i l  from the model surface.  A t  a = 4 O ,  t he   vo r t i ce s  are n o t   v i s i b l e   i n  
the  vapor-screen  photographs;  however, a t  a = 8 O ,  the   dark  areas  a t  the  model upper 
su r face   i nd ica t e   t he   l oca t ion  of the   vor t ices .   For   th i s   angle  of a t t ack ,   t he   vo r t i -  
ces  appear much s t ronger   in   the  oi l - f law  photographs.  Flow separat ion on the  hori-  
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zonta l  t a i l  i s  a l so   i nd ica t ed  a t  a = 8 O  by the  bui ldup of l ight-colored o i l  along 
t h e   t r a i l i n g  edge of the  t a i l .  

CONCLUDING =MARKS 

An i nves t iga t ion  w a s  conducted in   the  Langley  Unitary  Plan Wind Tunnel a t  Mach 
numbers  from 2.3 to  4.63 of a model cons i s t ing  of an e l l i p t i c a l  body and  an  in-plane 
h o r i z o n t a l   t a i l .  The following  i tems are considered  to  be  the most s i g n i f i c a n t  
r e s u l t s  of the   inves t iga t ion :  

1 .  The base-pressure  drag  correction w a s  on the order  of one-half  the 
uncorrected  zero- l i f t   drag of the model, and  had a s i g n i f i c a n t  effect  on the  
magnitude of t he   l i f t -d rag   r a t io s .  

2. I n  some cases ,   the   configurat ion  with  negat ive t a i l  def lec t ions   y ie lded  
higher   values  of maximum l i f t - d r a g   r a t i o   t h a n  d id  the  configurat ion  with no t a i l  
def lec t ion .   This  w a s  due t o  body upwash ac t ing  on the  tail which  produced  an  addi- 
t i o n a l   l i f t   i n c r e m e n t   w i t h   e s s e n t i a l l y  no drag  penalty.  

3. Linear  theory  methods  used  to estimate some of the  longitudinal  aerodynamic 
c h a r a c t e r i s t i c s  of the model y i e l d e d   r e s u l t s  which  compared well  with  experimental 
data f o r   a l l  Mach numbers i n   t h i s   i n v e s t i g a t i o n  and for   both  small   angles  of a t t ack  
and larger   angles  of a t t ack  where nonlinear  (vortex)  f low phenomena were present .  
These  methods  can  therefore  be  used  to  provide  guidance  in  designing  configurations 
s imi l a r   t o   t he  model i n   t h i s   i n v e s t i g a t i o n .  

Langley  Research  Center 
National  Aeronautics and  Space  Administration 
Hampton, VA 23665 
May 6, 1982 
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Figure 2.-  Photographs of model i n s t a l l e d   i n  Langley 
Unitary  Plan Wind Tunnel. 6, = -40. 
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Figure 5.- Variat ion of chamber-pressure  drag w i t h  angle of a t tack  for 
var ious Mach numbers. 
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( a )  a = 40. 

Figure 13.- Flow visual izat ion  photographs of 
M = 4.00. 
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model. Body-tail   configuration; 
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(b) a = 8 O .  

Figure 13 .- Concluded. 
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