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SUMMARY

The drag problems associated with the addition of external stores to

airplanes are reviewed. Current analytic techniques for estimating drag

penalties associated with the addition of stores in both subsonic and super-

sonic flight are discussed. In subsonic flight, the drag penalty caused by

the addition of external stores is shown to be a function of the type of store

installation. In supersonic flight, the drag is shown to be a function of the

type of store installation and also of the location of the store installation

with respect to the rest of the airplane components. Special store arrange-

ments and attention to the design of the store itself can reduce the drag

penalty of the store installation.

INTRODUCTION

The current trend in military airplanes is toward carrying a large

variety of external stores in the form of bombs, rockets, rocket launchers,

and fuel tanks. The essence of the problem associated with these external

stores is that the aerodynamicist designs the airplane to be essentially

"clean" as shown in figure l, while the airplane will probably fly in some

less clean configuration, as shown in figure 2. The addition of external

stores in various combinations and by various methods of attachment can lead

to precipitous increases in drag and perhaps compromise the mission of the

airplane. In figure 2 are shown only a few of the possible arrangements of

stores - it has been estimated that there are roughly 17 million store com-

binations possible on one currently operational Navy airplane.

A great quantity of data on external stores has been published in the

past 15 years by the NACA, the NASA, and other research organizations. A

rather extensive bibliography which covers such problem areas as store

effects on performance, store characteristics, and configuration and inter-

ference effects is included herein. A parallel bibliography, covering store

separation characteristics and store loads# is contained in paper no. 8 by

McKinney and Polhamus.

The present paper is concerned with the drag characteristics of the

store-airplane configuration. Selected data from some of the reports in the

bibliography are presented and some general conclusions regarding store drag

are made. A directory of the bibliography is included in table I as a con-

venience to the reader in locating specific information. _.
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DISCUSSION OF ANALYTIC TECHNIQUES

The discussion of analytic techniques is limited to some of the funda-

mental problems associated with the drag of external stores or of the store-

airplane combination. The basic factors which must be considered in esti-

mating the zero-lift drag of the airplane with external stores in the subsonic

region are skin-friction drag, base drag, form drag, and interference drag.

Estimates can be readily made for the skin-friction drag, base drag, and

form drag by using well-documented techniques, as all these drag components

are essentially the drag components of the isolated store. Interference

effects, particularly store-store interference where stores are mounted in

close proximity, may lead to a significant drag increase. Some limited data

on these effects exist and are included in the bibliography.

Factors to be evaluated in the supersonic region are skin-friction drag,

base drag, asymmetry and interference drag, and wave drag. Skin-friction and

base drag can be estimated by using well-known techniques, asymmetry drag and

interference effects can be estimated by using techniques described in paper

no. 26 by Carlson and McLean, and the wave drag, which must be estimated for

the store and airplane in combination, can be calculated byusing a method

programed for an electronic computer. This zero-lift wave-drag program is

described in part in paper no. 27 by Harris.
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It should be pointed out that, although great quantities of wind-tunnel

external-store data exist, in many cases insufficient knowledge of the nature

of the boundary layer leads to inaccuracies in skin-friction estimation and

extrapolation to full-scale values.

Within the supersonic region, the accuracy of the drag estimates also

depends on how closely the configuration satisfies the assumptions of linear-

ized theory upon which the compute_ programs are based. Numerous close cor-

relations have been made by using these estimating techniques on various

versions of supersonic transport configurations. These designs are generally

long and slender with thin wing sections and with all components integrated

to produce a low-drag configuration. The average fighter airplane, however,

is not likely to be slender; the wing elements may be relatively thick; and,

the external stores may be added with little regard to favorable interference

effects. Figure 3 shows the correlation between theory and experiment obtained

for a current fighter airplane in the transonic and supersonic flight regimes.

Zero-lift drag is plotted against Mach number. The configuration is a variable-

sweep airplane with the wings swept fully aft. The experimental data are from

references 1 and 2. The stores are pylon mounted beneath the wing - four

stores for the transonic region and two stores for the supersonic region. The

level of drag for the stores-off configuration is predicted very well in the

subcritical Mach number range, and the increment due to the addition of stores

is also predicted very closely_

In the supersonic region, the estimated drag for thestores-off configura-

"tion is less than that for th_ experiment. The increment between the stores-

on data and stores-off data is predicted reasonably well by the analytic

methods. I_ appears that some further refinement of the analytic techniques

would be useful in making more accurate quantitative estimates of the drag

characteristics of configurations such as this.

DISCUSSION OF EXPERIMENTAL DATA

The remainder of this paper is concerned with a number of particular store

installations. Most of these store arrangements are typical of those found on

current fighter airplanes.

Analysis of the data in figure 4 gives an idea of the subsonic drag pen-

alty associated wlth several types of store installations. The data in fig-

ures 4 and _were taken from a number of the reports in the bibliography. The

ordinate is the increment in experimental zero-lift drag due to the addition

of the store or stores. The abscissa is the drag of the isolated store multi-

plied by the number of stores in the installation. All coefficients are based

on the wing area of the particular configuration. No attempt was made to pre-

dict the drag increment of the store support system; thus, the experimental

value is the total drag penalty of the store and installation. The solid llne

represents equality between the experimental drag increment and the isolated

store drag. Examples of the more common installations are the pylon-mounted

single store, the pylon-mounted multiple rack, and the tangent-mounted store,
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where the store is mounted flush with the aircraft surface. Less common per-

haps is the semisubmerged installation. It is not surprising that this semi-

submerged installation shows low values of measured drag compared_ith the

isolated store drag since roughly half the wetted area is submerged_-Ithin the

airplane.

In general, for stores carried completely external to the aircraft, the

tangent mount and the pylon-mounted single store lead to only small drag

penalties, while the pylon-mounted multiple-rack installation causes a fairly

sizable drag penalty.

Figure _ illustrates the same type of analysis for the supersonic Mach

number range. Again_ the total measured increase in zero-lift drag due to the

installation of the store or stores is plotted agsinst a simple multiple of

the isolated-store drag. Here again the coefficients are based on the wing

area for the particular configuration. The Mach number range is from about

1.4 to 2.5. Figure 6 shows sketches of the various installations keyed to the

data points in figure _. Data point Q is for a model of a current fighter

airplane with four Falcon missiles. The increment of installation drag is due

in part to the skin friction of the rather large end-plate installation. It

should be noted that some decrease in the store drag increment occurred at

lift. Data point Q represents the same type of configuration but with two
Falcon missiles. The deviation from the line of equality is somewhat less for

this installation than for installation O" However the decrease in the drag

increment at lift for installation Q is negligible. Installation _ is a

rather unique mounting system; that is, the six missiles were sting mounted on

the leading edge of the wing. A portion of the drag reduction is undoubtedly

due to the elimination of missile base drag by the support system. Installa-

tion Q is for the underwing installation of the same six missiles. A sig-

nificant increase in drag over that for the leading-edge installation is

apparent; however the departure from the line of equality can be attributed in

part to the increased skin-friction drag of the pylon installations.

Installations Q and Q, for a research model, indicate the large influ-
ence of store location on drag. In this particular case, the forward location

led to a very high drag level compared with that for the rearward location.

Installations O to @ are for a model of a current fighter airplane with a

variety of Sparrow installations. The two fuselage mounts (O and O)_show

considerably less drag penalty than the corresponding store wing mounts

and O' respectively. Installations O and @ are pylon mounts on the

engine nacelles and on the fuselage. The fuselage mount @ shows an appre-

ciably smaller drag penalty than the nacelle mount @ .

It can be seen that, for the supersonic range in particular, not only the

type of installation but also its location on the aircraft can considerably

affect the magnitude of the drag. For the supersonic range, consideration of

the store in the design of the aircraft using area-rule techniques would

certainly be of benefit.
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Some of the installations mentioned are perhaps worthy of further comment.

Figure 7 presents experimental results for a tangent-mounted store installation

and a pylon-mounted installation. The increment of drag for the tangent-

mounted store is approximately the estimated amount for skln-friction and base

drag. The added increment for the pylon is, however, considerably more than

can be attributed to skin-friction drag. The reason for these phenomena is, at

present, unknown, although it is probably associated with the amount of the

store submerged within the boundary layer.

Figure 8 shows data from reference 3 for a current fighter airplane with

a large store semisubmerged in the fuselage. Data are presented for the clean

configuration, that is, with the cavity faired, for the configuration with the

store installed, and for the configuration with the open cavity after ejection

of the store. Of particular interest is the drag of the cavity with the store

removed. For this particular installation, in the high subsonic and low super-

sonic speed ranges, the cavity drag penalty is as much or more than that for

the installed store. Although this is not always the case, it is a point to

be evaluated when considering a store installation of this type.

Figure 9 presents data for a tandem store installation consisting of two

rows of three tandem-mounted stores. On the left side of the figure is shown

the gross drag increment for the one, two, and three store pair installations

over the Mach number range from 0.6 to 0.9. On the right side of the figure

is shown the increment in drag due to the addition of the last store pair for

various Mach numbers. It can be seen that the increment in drag for each

additional pair decreases. For a blunt-nosed, blunt-based store, this type of

installation should be of considerable benefit.

Figure lO is concerned more with individual stores than with store instal-

lations. The data are from reference 4. The installation consists of

16 stores, 9 in the free stream and 7 tandem mounted. The drag increment of

the installation is quite large; however, a significant increase is noted for

a change in corner radius of the stores. This increment remained relatively

constant over the Mach number range of the tests.

This figure illustrates the basis of the store drag problem, that is, if

it is necessary to hang a multitude of stores from the aircraft, then a large

drag penalty will likely exist. In this case, the drag of the configuration

was more than doubled by the addition of stores.
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CONCLUDING REMARKS

Analytic methods have been shown to give a reasonably good estimate of

the drag increment due to the addition of external stores. The drag penalty

due to the addition of stores in the subsonic speed range has been shown to

depend in part on the type of installation; the lovest drag penalty is asso-

ciated with a semisubmerged installation and the largest drag penalty _-Ith a

multiple-rack installation. At supersonic speeds, the drag of the store

depends not only on the type of installation but also on the store location.

Use of the analytic methods through area-rule considerations offers promise of

drag reduction in the supersonic flight regime. Other factors to be considered

the shape of the store itself.
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