254 research outputs found

    Many-body interaction analysis: Algorithm development and application to large molecular clusters

    No full text
    A completely automated algorithm for performing many-body interaction energy analysis of clusters (MBAC) [M. J. Elrodt and R. J. Saykally, Chem. Rev. 94, 1975 (1994); S. S. Xantheas, J. Chem. Phys. 104, 8821 (1996)] at restricted Hartree-Fock (RHF)/MA Plesset 2nd order perturbation theory (MP2)/density functional theory (DFT) level of theory is reported. Use of superior guess density matrices (DM's) for smaller fragments generated from DM of the parent system and elimination of energetically insignificant higher-body combinations, leads to a more efficient performance (speed-up up to 2) compared to the conventional procedure. MBAC approach has been tested out on several large-sized weakly bound molecular clusters such as (H(2)O)(n), n=8, 12, 16, 20 and hydrated clusters of amides and aldehydes. The MBAC results indicate that the amides interact more strongly with water than aldehydes in these clusters. It also reconfirms minimization of the basis set superposition error for large cluster on using superior quality basis set. In case of larger weakly bound clusters, the contributions higher than four body are found to be repulsive in nature and smaller in magnitude. The reason for this may be attributed to the increased random orientations of the interacting molecules separated from each other by large distances.Financial support from the Council of Scientific and Industrial Research (CSIR), New Delhi, India and the Center for Development of Advanced Computing (C-DAC), Pune, India, is gratefully acknowledged

    Enabling rapid and accurate construction of CCSD(T)-level potential energy surface of large molecules using molecular tailoring approach

    Full text link
    The construction of the potential energy surface (PES) of even a medium-sized molecule employing correlated theory, such as CCSD(T), is an arduous task due to the high computational cost. In this Letter, we report the possibility of efficient construction of such a PES employing the molecular tailoring approach (MTA) on off-the-shelf hardware. The full calculation (FC) as well as MTA energies at CCSD(T)/aug-cc-pVTZ level for three test molecules, viz. acetylacetone, N-methyacetamide, and tropolone are reported. All the MTA energies are in excellent agreement with their FC counterparts (typical error being sub-millihartree) with a time advantage factor of 3 to 5. The energy barrier from the ground- to transition-state is accurately captured. Further, the accuracy and efficiency of the MTA method for estimating energy gradients at CCSD(T) level are demonstrated. This work brings out the possibility of the construction of PES for large molecules using MTA with the computational economy at a high level of theory and/or basis set

    Rapid topography mapping of scalar fields: Large molecular clusters

    Full text link
    The following article appeared in Journal of Chemical Physics 137.7 (2012): 074116 and may be found at http://scitation.aip.org/content/aip/journal/jcp/137/7/10.1063/1.4746243An efficient and rapid algorithm for topography mapping of scalar fields, molecular electron density (MED) and molecular electrostatic potential (MESP) is presented. The highlight of the work is the use of fast function evaluation by Deformed-atoms-in-molecules (DAM) method. The DAM method provides very rapid as well as sufficiently accurate function and gradient evaluation. For mapping the topography of large systems, the molecular tailoring approach (MTA) is invoked. This new code is tested out for mapping the MED and MESP critical points (CP's) of small systems. It is further applied to large molecular clusters viz. (H 2O) 25, (C 6H 6) 8 and also to a unit cell of valine crystal at MP26-31G(d) level of theory. The completeness of the topography is checked by extensive search as well as applying the Poincaré-Hopf relation. The results obtained show that the DAM method in combination with MTA provides a rapid and efficient route for mapping the topography of large molecular systemsAuthors thank the Center for Development of Advanced Computing (C-DAC), Pune for financial and computational support. S.R.G. is grateful to the Department of Science and Technology (DST) for the award of J. C. Bose National Fellowship. R. López acknowledges partial funding from the CAM (S2009_PPQ-1545, LIQUORGAS) and MICINN (CTQ2010-19232). Authors are also thankful to Dr. Graeme M. Day, University of Cambridge, for providing the coordinates of unit cell of valine crystal and to Dr. V. Subramanian, CLRI, Chennai for providing some test run

    Preparation, Characterization and In Vitro Drug Release Studies of 6-mercaptopurine Thin Film

    Get PDF
    Oral thin films of 6-mercaptopurine were fabricated from mucoadhesive polymer, chitosan and polyvinylpyrrolidone for the purpose of prolonging drug release and improving its bioavailability. All fabricated film formulations prepared were smooth and translucent, with good flexibility. The weight and thickness of all the formulations were found to be uniform. These films were also evaluated for surface pH, folding endurance, swelling percentage (% S) and in vitro disintegration time. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) were used to evaluate the physico-chemical nature of the films. In-vitro drug release have shown enhanced release profiles for thin films compared to pure drug and the release patterns have been found to be pH dependant. The results of the study reveals that fabrication of 6-MP oral thin film by using solvent cast technology is a simple and an efficient method for drug delivery to achieve desired therapeutic compliance.Keywords: 6-mercaptopurine; In Vitro Drug Release; SEM; FTI

    Seasonal and Altitudinal Changes in Population Density of 20 Species of Drosophila in Chamundi Hill

    Get PDF
    A year long study was conducted to analyze the altitudinal and seasonal variation in a population of Drosophila (Diptera: Drosophilidae) on Chamundi hill of Mysore, Karnataka State, India. A total of 16,671 Drosophila flies belonging to 20 species of 4 subgenera were collected at altitudes of 680 m, 780 m, 880 m and 980 m. The subgenus Sophophora was predominant with 14 species and the subgenus Drosilopha was least represented with only a single species. Cluster analysis and constancy methods were used to analyze the species occurrence qualitatively. Altitudinal changes in the population density, and relative abundance of the different species at different seasons were also studied. The diversity of the Drosophila community was assessed by applying the Simpson and Berger-Parker indices. At 680 m the Simpson Index was low at 0.129 and the Berger- Parker index was high at 1.1 at 980 m. Linear regression showed that the Drosophila community was positively correlated with rainfall but not elevation, Furthermore the density of Drosophila changed significantly in different seasons (F = 11.20, df 2, 9; P<0.004). The distributional pattern of a species or related group of species was uneven in space and time. D. malerkotliana and D. nasuta were found at all altitudes and can be considered as dominant species

    Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma

    Get PDF
    Promoter region hyermethylation and transcriptional silencing is a frequent cause of tumour suppressor gene (TSG) inactivation in many types of human cancers. Functional epigenetic studies, in which gene expression is induced by treatment with demethylating agents, may identify novel genes with tumour-specific methylation. We used high-density gene expression microarrays in a functional epigenetic study of 11 renal cell carcinoma (RCC) cell lines. Twenty-eight genes were then selected for analysis of promoter methylation status in cell lines and primary RCC. Eight genes (BNC1, PDLIM4, RPRM, CST6, SFRP1, GREM1, COL14A1 and COL15A1) showed frequent (30% of RCC tested) tumour-specific promoter region methylation. Hypermethylation was associated with transcriptional silencing. Re-expression of BNC1, CST6, RPRM and SFRP1 suppressed the growth of RCC cell lines and RNA interference knock-down of BNC1, SFRP1 and COL14A1 increased the growth of RCC cell lines. Methylation of BNC1 or COL14A1 was associated with a poorer prognosis independent of tumour size, stage or grade. The identification of these epigenetically inactivated candidate RCC TSGs can provide insights into renal tumourigenesis and a basis for developing novel therapies and biomarkers for prognosis and detection. © 2010 Macmillan Publishers Limited.Published versio

    Theoretical analysis of the dose dependence of the oxygen enhancement ratio and its relevance for clinical applications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The increased resistance of hypoxic cells to ionizing radiation is usually believed to be the primary reason for treatment failure in tumors with oxygen-deficient areas. This oxygen effect can be expressed quantitatively by the oxygen enhancement ratio (OER). Here we investigate theoretically the dependence of the OER on the applied local dose for different types of ionizing irradiation and discuss its importance for clinical applications in radiotherapy for two scenarios: small dose variations during hypoxia-based dose painting and larger dose changes introduced by altered fractionation schemes.</p> <p>Methods</p> <p>Using the widespread Alper-Howard-Flanders and standard linear-quadratic (LQ) models, OER calculations are performed for T1 human kidney and V79 Chinese hamster cells for various dose levels and various hypoxic oxygen partial pressures (pO2) between 0.01 and 20 mmHg as present in clinical situations <it>in vivo</it>. Our work comprises the analysis for both low linear energy transfer (LET) treatment with photons or protons and high-LET treatment with heavy ions. A detailed analysis of experimental data from the literature with respect to the dose dependence of the oxygen effect is performed, revealing controversial opinions whether the OER increases, decreases or stays constant with dose.</p> <p>Results</p> <p>The behavior of the OER with dose per fraction depends primarily on the ratios of the LQ parameters alpha and beta under hypoxic and aerobic conditions, which themselves depend on LET, pO2 and the cell or tissue type. According to our calculations, the OER variations with dose <it>in vivo </it>for low-LET treatments are moderate, with changes in the OER up to 11% for dose painting (1 or 3 Gy per fraction compared to 2 Gy) and up to 22% in hyper-/hypofractionation (0.5 or 20 Gy per fraction compared to 2 Gy) for oxygen tensions between 0.2 and 20 mmHg typically measured clinically in hypoxic tumors. For extremely hypoxic cells (0.01 mmHg), the dose dependence of the OER becomes more pronounced (up to 36%). For high LET, OER variations up to 4% for the whole range of oxygen tensions between 0.01 and 20 mmHg were found, which were much smaller than for low LET.</p> <p>Conclusions</p> <p>The formalism presented in this paper can be used for various tissue and radiation types to estimate OER variations with dose and help to decide in clinical practice whether some dose changes in dose painting or in fractionation can bring more benefit in terms of the OER in the treatment of a specific hypoxic tumor.</p

    Expression profiling identifies genes involved in neoplastic transformation of serous ovarian cancer

    Get PDF
    Background: The malignant potential of serous ovarian tumors, the most common ovarian tumor subtype, varies from benign to low malignant potential (LMP) tumors to frankly invasive cancers. Given the uncertainty about the relationship between these different forms, we compared their patterns of gene expression. Methods: Expression profiling was carried out on samples of 7 benign, 7 LMP and 28 invasive (moderate and poorly differentiated) serous tumors and four whole normal ovaries using oligonucleotide microarrays representing over 21,000 genes. Results: We identified 311 transcripts that distinguished invasive from benign tumors, and 20 transcripts that were significantly differentially expressed between invasive and LMP tumors at p < 0.01 (with multiple testing correction). Five genes that were differentially expressed between invasive and either benign or normal tissues were validated by real time PCR in an independent panel of 46 serous tumors (4 benign, 7 LMP, 35 invasive). Overexpression of SLPI and WNT7A and down-regulation of C6orf31, PDGFRA and GLTSCR2 were measured in invasive and LMP compared with benign and normal tissues. Over-expression of WNT7A in an ovarian cancer cell line led to increased migration and invasive capacity. Conclusion: These results highlight several genes that may play an important role across the spectrum of serous ovarian tumorigenesis
    corecore