360 research outputs found

    Building urban flood resilience with rainwater management

    Get PDF
    This is the final version.Urban stormwater is a significant hazard and a promising resource. Recent studies have highlighted that effective and smart rainwater management provides both flood and drought mitigation benefits through capturing extreme rainfall and contributing to water demands at the property scale [1], indicating opportunities to upscale benefits across urban areas. However, for stormwater management to reach this potential, planners must move away from ad-hoc and localised application towards integrated catchment-wide strategies, capable of delivering catchment-wide benefits. New planning methodologies are required to achieve this shift and key questions remain regarding how strategies could be applied to maximise flood resilience, supply augmentation and cost-effectiveness across urban scales. This study responds to these emerging challenges through assessing the potential benefits of catchment-scale rainwater management across the Pandon Dene surface water catchment in Newcastle-upon Tyne, NE England.Engineering and Physical Sciences Research Council (EPSRC

    Reliability in CMOS IC processing

    Get PDF
    Critical CMOS IC processing reliability monitors are defined in this paper. These monitors are divided into three categories: process qualifications, ongoing production workcell monitors, and ongoing reliability monitors. The key measures in each of these categories are identified and prioritized based on their importance

    Wake Measurements and Loss Evaluation in a Controlled Diffusion Compressor Cascade

    Get PDF
    The article of record as published may be located at http://dx.doi.org/10.1115/1.2929120The results of two component laser-Doppler velocimeter (LDV) surveys made in the near wake (to one fifth chord) of a controlled diffusion (CD) compressor blade in a large-scale cascade wind tunnel are reported. The measurements were made at three positive incidence angles from near design to angles thought to approach stall. Comparisons were made with calibrated pressure probe and hot-wire wake measurements and good agreement was found. The flow was found to be fully attached at the trailing edge at all incidence angles and the wake profiles were found to be highly skewed. Despite the precision obtained in the wake velocity profiles, the blade loss could not be evaluated accurately without measurements of the pressure field. The blade trailing edge surface pressures and velocity profiles were found to be consistent with downstream pressure probe measurements of loss, allowing conclusions to be drawn concerning the design of the trailing edge

    Making judgements about students making work : lecturers’ assessment practices in art and design.

    Get PDF
    This research study explores the assessment practices in two higher education art and design departments. The key aim of this research was to explore art and design studio assessment practices as lived by and experienced by art and design lecturers. This work draws on two bodies of pre existing research. Firstly this study adopted innovative methodological approaches that have been employed to good effect to explore assessment in text based subjects (think aloud) and moderation mark agreement (observation). Secondly the study builds on existing research into the assessment of creative practice. By applying thinking aloud methodologies into a creative practice assessment context the authors seek to illuminate the ‘in practice’ rather than espoused assessment approaches adopted. The analysis suggests that lecturers in the study employed three macro conceptions of quality to support the judgement process. These were; the demonstration of significant learning over time, the demonstration of effective studentship and the presentation of meaningful art/design work

    Engineering Comes Home: Co-designing nexus infrastructure from the bottom-up

    Get PDF
    The ‘nexus’ between water, food and energy systems is well established. It is conventionally analysed as a supply-side problem of infrastructure interdependencies, overlooking demand-side interactions and opportunities. The home is one of the most significant sites of nexus interactions and opportunities for redesigning technologies and infrastructure. New developments in ‘smart city’ technologies have the potential to support a bottom-up approach to designing and managing nexus infrastructure. The Engineering Comes Home was a research project that turned infrastructure design on its head. The objectives of the project were to: Demonstrate a new paradigm for engineering design starting from the viewpoint of the home, looking out towards systems of provision to meet household demands. Integrate thinking about water, energy, food, waste and data at the domestic scale to support userled innovation and co-design of technologies and infrastructure. Test new design methods that connect homes to communities, technologies and infrastructure, enhancing positive interactions between data, water, energy, food and waste systems. Develop a robust Lifecycle Assessment (LCA) Calculator tool to support environmental decisionmaking in co-design. Working with residents of the Meakin Estate in South London, the project followed a co-design method to identify requirements, analyse options and develop and test a detailed design for a preferred option. The outputs were: 1) Ethnographic study of how residents use water, energy and food resources in their homes and key opportunities for engineering design to improve wellbeing and reduce resource consumption. 2) Co-design of decentralised infrastructural systems in three workshops in 2016-2017. The first workshop identified key priorities for development from the community using a novel token-based system design method, to enable participants to build up alternative designs for local provision of water, energy, food and waste services. The second workshop provided participants with factsheets and photographs of the candidate technologies, which were then analysed using a LCA Calculator tool. 47 Rainwater harvesting was selected as the technology for further co-design in the third workshop, which focussed on scaling up a pilot installation. 3) Pilot-scale smart rainwater system was installed in partnership with the Over The Air Analytics (OTA). OTA’s system enables remote control of the rainwater storage tanks to optimise their performance as stormwater attenuation as well as non-potable water supply. 4) Lifecycle Assessment (LCA) Calculator to enable quick estimation of the impacts of new systems and technology to deliver water, energy and food, and manage waste at the household and neighbourhood scale. 5) Stakeholders, including utilities, design consultancies and community based organisations, were engaged in three workshops to inform the wider relevance and development of the co-design methods and tools. 6) Toolbox and method statements to standardise and disseminate the methods used in the project for wider application and development

    Why small is beautiful: wing colour is free from thermoregulatory constraint in the small lycaenid butterfly, Polyommatus icarus

    Get PDF
    We examined the roles of wing melanisation, weight, and basking posture in thermoregulation in Polyommatus Icarus, a phenotypically variable and protandrous member of the diverse Polyommatinae (Lycaenidae). Under controlled experimental conditions, approximating to marginal environmental conditions for activity in the field (= infrequent flight, long duration basking periods), warming rates are maximised with fully open wings and maximum body temperatures are dependent on weight. Variation in wing melanisation within and between sexes has no effect on warming rates; males and females which differ in melanisation had similar warming rates. Posture also affected cooling rates, consistent with cooling being dependent on convective heat loss. We hypothesise that for this small sized butterfly, melanisation has little or no effect on thermoregulation. This may be a factor contributing to the diversity of wing colours in the Polyommatinae. Because of the importance of size for thermoregulation in this small butterfly, requirements for attaining a suitable size to confer thermal stability in adults may also be a factor influencing larval feeding rates, development time and patterns of voltinism. Our findings indicate that commonly accepted views of the importance of melanisation, posture and size to thermoregulation, developed using medium and large sized butterflies, are not necessarily applicable to small sized butterflies

    The Long Road Home: Driving Performance and Ocular Measurements of Drowsiness Following Night Shift-Work

    Get PDF
    Because time-of-day effects on sleepiness interact with duration of prior waking, the commute home following a night shift is an especially vulnerable time for night shift workers. The current study aimed to explore the impact of night shift work on critical driving events as well as to explore physiological indices leading up to these events. Sixteen healthy night shift workers (18-65 years) each participated in two 2-hour driving sessions in an instrumented vehicle on a driving track. A baseline driving session was conducted following a night of rest, while another session was conducted following a night of shift work. Objective physiological measurements of drowsiness were monitored and collected continuously throughout the drive session as well as different measures of driving performance. Following the night-shift, drivers had higher Johns Drowsiness Scores (based on ocular measures) and were more likely to experience lane excursion events and investigator-initiated braking events than following a night’s rest. While they also reported increasing failures in lane keeping ability, the pattern was not always consistent with actual observed data. The implications for countermeasures are discussed

    Natural growth rates in Antarctic krill (Euphausia superba): II. Predictive models based on food, temperature, body length, sex, and maturity stage

    Get PDF
    We used the instantaneous growth rate method to determine the effects of food, temperature, krill length, sex, and maturity stage on in situ summer growth of krill across the southwest Atlantic sector of the Southern Ocean. The main aims were to examine the separate effects of each variable and to generate a predictive model of growth based on satellite-derivable environmental data. Both growth increments in length on moulting (GIs) and daily growth rates (DGRs, mm d-1) ranged greatly among the 59 swarms, from 0.58–15% and 0.013–0.32 mm d-1. However, all swarms maintained positive mean growth, even those in the low chlorophyll a (Chl a) zone of the central Scotia Sea. Among a suite of indices of food quantity and quality, large-scale monthly Chl a values from SeaWiFS predicted krill growth the best. Across our study area, the great contrast between bloom and nonbloom regions was a major factor driving variation in growth rates, obscuring more subtle effects of food quality. GIs and DGRs decreased with increasing krill length and decreased above a temperature optimum of 0.5°C. This probably reflects the onset of thermal stress at the northern limit of krill’s range. Thus, growth rates were fastest in the ice edge blooms of the southern Scotia Sea and not at South Georgia as previously suggested. This reflects both the smaller size of the krill and the colder water in the south being optimum for growth. Males tended to have higher GIs than females but longer intermoult periods, leading to similar DGRs between sexes. DGRs of equivalent-size krill tended to decrease with maturity stage, suggesting the progressive allocation of energy toward reproduction rather than somatic growth. Our maximum DGRs are higher than most literature values, equating to a 5.7% increase in mass per day. This value fits within a realistic energy budget, suggesting a maximum carbon ration of ~20% d-1. Over the whole Scotia Sea/South Georgia area, the gross turnover of krill biomass was ~1% d-1

    Co-producing research with academics and industry to create a more resilient UK water sector

    Get PDF
    This is the final version. Available on open access from UCL Press via the DOI in this recordSocietal, economic and environmental impact generated by academic research is a key focus of publicly funded research in the UK. Drawing on experiences from the Safe & SuRe project, a five-year research project that was co-produced with industry, this paper explores the challenges, learnings and benefits of co-producing research with academics and practitioners to create a more resilient UK water sector. Three aspects of the project are explored in detail: the use of a steering group, co-developing research intensively with a water company, and co-dissemination industry-facing events. Emerging themes include: (1) benefits of the industry steering group to develop working relationships and trust among the group; (2) increased dialogue and sharing of information between industry and academics going beyond the one-way communication more commonly reported by STEM academics; and (3) the value of co-disseminating research to maintain and engage new connections and spark new research questions.Engineering and Physical Sciences Research Council (EPSRC
    • …
    corecore