792 research outputs found

    A class of well-posed parabolic final value problems

    Full text link
    This paper focuses on parabolic final value problems, and well-posedness is proved for a large class of these. The clarification is obtained from Hilbert spaces that characterise data that give existence, uniqueness and stability of the solutions. The data space is the graph normed domain of an unbounded operator that maps final states to the corresponding initial states. It induces a new compatibility condition, depending crucially on the fact that analytic semigroups always are invertible in the class of closed operators. Lax--Milgram operators in vector distribution spaces constitute the main framework. The final value heat conduction problem on a smooth open set is also proved to be well posed, and non-zero Dirichlet data are shown to require an extended compatibility condition obtained by adding an improper Bochner integral.Comment: 16 pages. To appear in "Applied and numerical harmonic analysis"; a reference update. Conference contribution, based on arXiv:1707.02136, with some further development

    Effect of Residue Management, Row Spacing, and Seeding Rate on Winter Canola Establishment, Winter Survival, and Yield

    Get PDF
    Winter survival of canola (Brassica napus L.) is a challenge for producers using high-residue, no-tillage, or reduced-tillage systems. An innovative residue management system being developed by AGCO Corporation was compared to cooperating canola producers’ residue management and planting methods in wheat stubble. This series of on-farm experiments was conducted in 2014-2015 and 2015-2016 at ten locations in central and south-central Kansas. The AGCO treatments were 20- or 30-in. row spacing and three seeding rates (100,000, 150,000, and 200,000 seeds/a) for a total of six treatments. The producer treatment at each location included row spacing, seeding rate, and residue management practices preferred by that producer. Due to winter stand loss, only one of the six experiments planted in the fall of 2014 was harvested for yield in 2015. All four experiments planted in fall 2015 were harvested for yield in 2016. Fall stands usually differed in response to seeding rate and often were greater in 20-in. rows than in 30-in. rows. Spring stands were not as tightly correlated with seeding rate, but were consistently greater in narrow rows, regardless of seeding rate and residue management practices. Winter survival increased with reductions in seeding rate at most locations and was greater in 20-in. rows than in 30-in. rows at three of the five harvested locations. Yields were not affected by residue management, row spacing, or seeding rate at two of the five locations, including the location with yields surpassing 60 bu/a. At the other three locations, yields with the AGCO residue management system equaled or exceeded yields obtained with cooperator practices that typically included much greater seeding rates. Yields seldom responded to seeding rate, but when they did, yields tended to increase as seeding rate decreased

    The observation of long-range three-body Coloumb effects in the decay of 16Ne

    Get PDF
    The interaction of an E/AE/A=57.6-MeV 17^{17}Ne beam with a Be target was used to populate levels in 16^{16}Ne following neutron knockout reactions. The decay of 16^{16}Ne states into the three-body 14^{14}O+pp+pp continuum was observed in the High Resolution Array (HiRA). For the first time for a 2p emitter, correlations between the momenta of the three decay products were measured with sufficient resolution and statistics to allow for an unambiguous demonstration of their dependence on the long-range nature of the Coulomb interaction. Contrary to previous experiments, the intrinsic decay width of the 16^{16}Ne ground state was found to be narrow (Γ<60\Gamma<60~keV), consistent with theoretical estimates.Comment: 6 pages, 5 figure

    On Determining Dead Layer and Detector Thicknesses for a Position-Sensitive Silicon Detector

    Get PDF
    In this work, two particular properties of the position-sensitive, thick silicon detectors (known as the "E" detectors) in the High Resolution Array (HiRA) are investigated: the thickness of the dead layer on the front of the detector, and the overall thickness of the detector itself. The dead layer thickness for each E detector in HiRA is extracted using a measurement of alpha particles emitted from a 212^{212}Pb pin source placed close to the detector surface. This procedure also allows for energy calibrations of the E detectors, which are otherwise inaccessible for alpha source calibration as each one is sandwiched between two other detectors. The E detector thickness is obtained from a combination of elastically scattered protons and an energy-loss calculation method. Results from these analyses agree with values provided by the manufacturer.Comment: Accepted for publication in Nuclear Instruments and Methods in Physics Researc

    The Speed of Fronts of the Reaction Diffusion Equation

    Full text link
    We study the speed of propagation of fronts for the scalar reaction-diffusion equation ut=uxx+f(u)u_t = u_{xx} + f(u)\, with f(0)=f(1)=0f(0) = f(1) = 0. We give a new integral variational principle for the speed of the fronts joining the state u=1u=1 to u=0u=0. No assumptions are made on the reaction term f(u)f(u) other than those needed to guarantee the existence of the front. Therefore our results apply to the classical case f>0f > 0 in (0,1)(0,1), to the bistable case and to cases in which ff has more than one internal zero in (0,1)(0,1).Comment: 7 pages Revtex, 1 figure not include

    Probabilistic representation for solutions of an irregular porous media type equation: the degenerate case

    Get PDF
    We consider a possibly degenerate porous media type equation over all of Rd\R^d with d=1d = 1, with monotone discontinuous coefficients with linear growth and prove a probabilistic representation of its solution in terms of an associated microscopic diffusion. This equation is motivated by some singular behaviour arising in complex self-organized critical systems. The main idea consists in approximating the equation by equations with monotone non-degenerate coefficients and deriving some new analytical properties of the solution

    Elastic breakup cross sections of well-bound nucleons

    Get PDF
    The 9Be(28Mg,27Na) one-proton removal reaction with a large proton separation energy of Sp(28Mg)=16.79 MeV is studied at intermediate beam energy. Coincidences of the bound 27Na residues with protons and other light charged particles are measured. These data are analyzed to determine the percentage contributions to the proton removal cross section from the elastic and inelastic nucleon removal mechanisms. These deduced contributions are compared with the eikonal reaction model predictions and with the previously measured data for reactions involving the re- moval of more weakly-bound protons from lighter nuclei. The role of transitions of the proton between different bound single-particle configurations upon the elastic breakup cross section is also quantified in this well-bound case. The measured and calculated elastic breakup fractions are found to be in good agreement.Comment: Phys. Rev. C 2014 (accepted
    corecore