208 research outputs found

    Using entanglement improves precision of quantum measurements

    Full text link
    We show how entanglement can be used to improve the estimation of an unknown transformation. Using entanglement is always of benefit, in improving either the precision or the stability of the measurement. Examples relevant for applications are illustrated, for either qubits and continuous variable

    Progress and Recent Trends in the Application of Nanoparticles as Low Carbon Fuel Additives—A State of the Art Review

    Get PDF
    The first part of the current review highlights the evolutionary nuances and research hotspots in the field of nanoparticles in low carbon fuels. Our findings reveal that contribution to the field is largely driven by researchers from Asia, mainly India. Of the three biofuels under review, biodiesel seems to be well studied and developed, whereas studies regarding vegetable oils and alcohols remain relatively scarce. The second part also reviews the application of nanoparticles in biodiesel/vegetable oil/alcohol-based fuels holistically, emphasizing fuel properties and engine characteristics. The current review reveals that the overall characteristics of the low carbon fuel–diesel blends improve under the influence of nanoparticles during combustion in diesel engines. The most important aspect of nanoparticles is that they act as an oxygen buffer that provides additional oxygen molecules in the combustion chamber, promoting complete combustion and lowering unburnt emissions. Moreover, the nanoparticles used for these purposes exhibit excellent catalytic behaviour as a result of their high surface area-to-volume ratio—this leads to a reduction in exhaust pollutants and ensures an efficient and complete combustion. Beyond energy-based indicators, the exergy, economic, environmental, and sustainability aspects of the blends in diesel engines are discussed. It is observed that the performance of the diesel engine fuelled with low carbon fuels according to the second law of efficiency improves under the influence of the nano-additives. Our final part shows that despite the benefits of nanoparticles, humans and animals are under serious threats from the highly toxic nature of nanoparticles. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.20JCJQJC00160; Cardiff University; Universiti Tenaga Nasional: IC6-BOLDREFRESH2025This research was funded by Tianjin Science Fund for Distinguished Young Scholars, grant number 20JCJQJC00160, and the Universiti Tenaga Nasional grant no. IC6-BOLDREFRESH2025 (HCR) under the BOLD2025 Program. The APC was funded by Cardiff University

    Progress in biomass torrefaction: Principles, applications and challenges

    Full text link
    The development of biofuels has been considered as an important countermeasure to abate anthropogenic CO2 emissions, suppress deteriorated atmospheric greenhouse effect, and mitigate global warming. To produce biofuels from biomass, thermochemical conversion processes are considered as the most efficient routes wherein torrefaction has the lowest global warming potential. Combustion is the easiest way to consume biomass, which can be burned alone or co-fired with coal to generate heat and power. However, solid biomass fuels are not commonly applied in the industry due to their characteristics of hygroscopic nature and high moisture content, low bulk density and calorific value, poor grindability, low compositional homogeneity, and lower resistance against biological degradation. In recently developing biomass conversion technologies, torrefaction has attracted much attention since it can effectively upgrade solid biomass and produce coal-like fuel. Torrefaction is categorized into dry and wet torrefaction; the former can further be split into non-oxidative and oxidative torrefaction. Despite numerous methods developed, non-oxidative torrefaction, normally termed torrefaction, has a higher potential for practical applications and commercialization when compared to other methods. To provide a comprehensive review of the progress in biomass torrefaction technologies, this study aims to perform an in-depth literature survey of torrefaction principles, processes, systems, and to identify a current trend in practical torrefaction development and environmental performance. Moreover, the encountered challenges and perspectives from torrefaction development are underlined. This state-of-the-art review is conducive to the production and applications of biochar for resource utilization and environmental sustainability. To date, several kinds of reactors have been developed, while there is still no obviously preferred one as they simultaneously have pros and cons. Integrating torrefaction with other processes such as co-firing, gasification, pyrolysis, and ironmaking, etc., makes it more efficient and economically feasible in contrast to using a single process. By virtue of capturing carbon dioxide during the growth stage of biomass, negative carbon emissions can even be achieved from torrefied biomass

    Down-Regulation of ZnT8 Expression in INS-1 Rat Pancreatic Beta Cells Reduces Insulin Content and Glucose-Inducible Insulin Secretion

    Get PDF
    The SLC30A8 gene codes for a pancreatic beta-cell-expressed zinc transporter, ZnT8. A polymorphism in the SLC30A8 gene is associated with susceptibility to type 2 diabetes, although the molecular mechanism through which this phenotype is manifest is incompletely understood. Such polymorphisms may exert their effect via impacting expression level of the gene product. We used an shRNA-mediated approach to reproducibly downregulate ZnT8 mRNA expression by >90% in the INS-1 pancreatic beta cell line. The ZnT8-downregulated cells exhibited diminished uptake of exogenous zinc, as determined using the zinc-sensitive reporter dye, zinquin. ZnT8-downregulated cells showed reduced insulin content and decreased insulin secretion (expressed as percent of total insulin content) in response to hyperglycemic stimulus, as determined by insulin immunoassay. ZnT8-depleted cells also showed fewer dense-core vesicles via electron microscopy. These data indicate that reduced ZnT8 expression in cultured pancreatic beta cells gives rise to a reduced insulin response to hyperglycemia. In addition, although we provide no direct evidence, these data suggest that an SLC30A8 expression-level polymorphism could affect insulin secretion and the glycemic response in vivo

    Microalgae Lipid Characterization

    Get PDF
    To meet the growing interest of utilizing microalgae biomass in the production of biofuels and nutraceutical and pharmaceutical lipids, we need suitable analytical methods and a comprehensive database for their lipid components. The objective of the present work was to demonstrate methodology and provide data on fatty acid composition, lipid class content and composition, characteristics of the unsaponifiables, and type of chlorophylls of five microalgae. Microalgae lipids were fractionated into TAG, FFA, and polar lipids using TLC, and the composition of fatty acids in total lipids and in each lipid class, hydrocarbons, and sterols were determined by GC-MS. Glyco- and phospholipids were profiled by LC/ESI-MS. Chlorophylls and their related metabolites were qualified by LC/APCI-MS. The melting and crystallization profiles of microalgae total lipids and their esters were analyzed by DSC to evaluate their potential biofuel applications. Significant differences and complexities of lipid composition among the algae tested were observed. The compositional information is valuable for strain selection, downstream biomass fractionation, and utilization
    corecore