148 research outputs found

    Almost sure limit theorems for a stationary normal sequence

    Get PDF
    AbstractWe prove almost sure limit theorems for the maximum of a stationary normal sequence under some conditions

    Path Planning of Anti ship Missile based on Voronoi Diagram and Binary Tree Algorithm

    Get PDF
    The path planning of anti-ship missile should be considered both cruising in safety and striking in quick, which is an intractable problem. In particular, it is difficult to consider the safety of each missile path in the path planning of multiple missiles. To solve this problem, the “AREA Algorithm” is presented to divide the relative relations of areas:relative security area of the threat areas and fast-attack area of target approaching. Specifically,it is a way to achieve area division through the relationship between the target and the center of the operational area. The Voronoi diagram topology network, Dijkstra algorithm and binary tree algorithm have been used in the above process as well. Finally, Simulations have verified the feasibility and obvious advantages of “AREA Algorithm” compared with the single algorithm, and the tactical meaning in path planning of multiple missiles

    Developmental Stage-Specific Imprinting of IPL in Domestic Pigs (Sus scrofa)

    Get PDF
    Imprinted in placenta and liver (IPL) gene has been identified as an imprinted gene in the mouse and human. Its sequence and imprinting status, however, have not been determined in the domestic pigs. In the present study, a 259 base pair-specific sequence for IPL gene of the domestic pig was obtained and a novel SNP, a T/C transition, was identified in IPL exon 1. The C allele of this polymorphism was found to be the predominant allele in Landrace,Yorkshire, and Duroc. The frequency of CC genotype and C allele are different in Duroc as compared with Yorkshire (P = .038 and P = .005, resp.). Variable imprinting status of this gene was observed in different developmental stages. For example, it is imprinted in 1-dayold newborns (expressed from the maternal allele), but imprinting was lost in 180-day-old adult (expressed from both parental alleles). Real-time PCR analysis showed the porcine IPL gene is expressed in all tested eight organ/tissues. The expression level was significantly higher in spleen, duodenum, lung, and bladder of 180-day-old Lantang adult compared to that in 1-day-old newborns Lantang pigs (P < .05). In conclusion, the imprinting of the porcine IPL gene is developmental stage and tissue specific

    Planning distribution network using the multi-agent game and distribution system operators

    Get PDF
    When planning the distribution network, the income of each market entity is calculated by a fixed price. How to take the price of power into account while developing the planning strategy for each organization in the actual power market is an urgent issue that needs to be addressed imminently. To address this problem, considering the continuous change in the market price due to the change in the supply–demand relationship in the actual power market, this article proposes a distribution network planning method which considers the distribution system operator (DSO) and multi-agent game. First, the planning decision model of distribution network companies and power users with different interest subjects is constructed with grid planning and DG operation as decision variables. Second, DSO is introduced to the game framework. Based on the distribution locational marginal pricing (DLMP), a price accounting model is being developed. Then, the transfer relationships and game behavior among the distribution company, power users, and DSO are analyzed. Finally, an iterative search algorithm is used to solve a multi-agent game planning model of a distribution network that takes into account price signals in the power market. Examples based on IEEE 33-bus systems validate the suggested method’s validity and efficacy

    A calibration method of USBL installation error based on attitude determination

    Get PDF
    The Ultra-short baseline (USBL) positioning system has important application in the positioning of underwater vehicles. The installation error angle of the USBL positioning system has an important influence on the positioning accuracy of USBL system. The traditional calibration methods have limited estimation accuracy for installation error angles and have high route requirements. To solve the above problems, a calibration method of installation error angle based on attitude determination is proposed in this paper. When strapdown inertial navigation system (SINS) and USBL are fixed together in the application process, the installation error angle of USBL is fixed and unchanged. Then the calibration of installation error angle can be accomplished with the idea of attitude determination. The vector observation model based on the installation error angle matrix is established first. Observation vectors are obtained by the relative position of transponders in the USBL coordinate frame. The reference vector is calculated by position of transponder, position and attitude of SINS and lever arm between SINS and USBL. By constructing the observation vectors and the reference vectors, the proposed method can calibrate the installation error angle of SINS and USBL in real time. The advantages of the proposed method are that it has no specific requirements for the calibration route and can calibrate the installation error angle in real time with high accuracy. In order to verify the performance of the proposed algorithm, simulation experiment and field experiment are carried out in this paper. The results of simulation experiment and field experiment show that the proposed method can give the estimated installation error angle of USBL in real time, and the estimated result is the best among several methods. The proposed method can not only achieve the calibration of the installation error angle in circular trajectory, but also in straight trajectory

    Cloprostenol sodium improves reproductive performance of multiparous sows during lactation

    Get PDF
    This study aimed to determine the effect of prostaglandin F2α (PGF2α) analog (D-cloprostenol sodium and DL-cloprostenol sodium) administration on the milk yield of multiparous sows (MS) and piglet growth performance. In total, 320 Landrace×Yorkshire parturient MS were randomly divided into three groups on day 115 of pregnancy: without treatment (N = 50), with 75 μg D-cloprostenol sodium (N = 137), and with 200 μg DL-cloprostenol sodium (N = 133). After delivery, the sows treated with D-cloprostenol sodium and DL-cloprostenol sodium were randomly allocated into three subgroups, respectively: (i) no additional treatment after farrowing; (ii) administration of cloprostenol sodium at 3 h and 5 days after farrowing; and (iii) administration of cloprostenol sodium at 3 h, 5 days, and 10 days after farrowing. Cloprostenol sodium effectively induced sows to synchronize parturition approximately 23 h after administration and increased the daytime delivery rates (p &lt; 0.05). Compared with DL-cloprostenol sodium, D-cloprostenol sodium shortened the farrowing duration and birth interval of sows for inducing farrowing (p &lt; 0.05). Moreover, we observed that a single administration of both D-cloprostenol sodium and DL-cloprostenol sodium a day before delivery significantly reduced the rates of stillborn piglets type II in MS (p &lt; 0.05). Compared to no treatment and single treatment with cloprostenol sodium, quartic treatments with cloprostenol sodium significantly increased the daily feed intake of MS, litter weight after weaning, and average daily gain of piglets (p &lt; 0.05). Cloprostenol sodium improved the 21-day milk yield, with D-cloprostenol sodium showing the best effect, which increased lactation ability by 30.30% (176.72 kg vs. 135.63 kg) (p &lt; 0.05). DL-cloprostenol sodium followed closely, increasing lactation ability by approximately 25.00% (169.71 kg vs. 135.63 kg) (p &lt; 0.05). During lactation, sows administered with D-cloprostenol sodium observed increased serum prolactin levels. Compared to untreated sows, the sows administered with D-cloprostenol sodium and multiple DL-cloprostenol sodium visibly shortened the weaning-to-estrus interval (WEI) and weaning-to-service interval (WSI) (p &lt; 0.05). Furthermore, quartic injections of D-cloprostenol sodium resulted in an 18 percentage point increase in the pregnancy rate of breeding sows compared to controls (82.61% vs. 64.58%) (p &gt; 0.05). In summary, cloprostenol sodium could enhance the reproductive performance of MS, particularly in terms of lactation performance. Additionally, the effect of quartic injections of D-cloprostenol sodium was the most pronounced

    Simulated Microgravity Compromises Mouse Oocyte Maturation by Disrupting Meiotic Spindle Organization and Inducing Cytoplasmic Blebbing

    Get PDF
    In the present study, we discovered that mouse oocyte maturation was inhibited by simulated microgravity via disturbing spindle organization. We cultured mouse oocytes under microgravity condition simulated by NASA's rotary cell culture system, examined the maturation rate and observed the spindle morphology (organization of cytoskeleton) during the mouse oocytes meiotic maturation. While the rate of germinal vesicle breakdown did not differ between 1 g gravity and simulated microgravity, rate of oocyte maturation decreased significantly in simulated microgravity. The rate of maturation was 8.94% in simulated microgravity and was 73.0% in 1 g gravity. The results show that the maturation of mouse oocytes in vitro was inhibited by the simulated microgravity. The spindle morphology observation shows that the microtubules and chromosomes can not form a complete spindle during oocyte meiotic maturation under simulated microgravity. And the disorder of γ-tubulin may partially result in disorganization of microtubules under simulated microgravity. These observations suggest that the meiotic spindle organization is gravity dependent. Although the spindle organization was disrupted by simulated microgravity, the function and organization of microfilaments were not pronouncedly affected by simulated microgravity. And we found that simulated microgravity induced oocytes cytoplasmic blebbing via an unknown mechanism. Transmission electron microscope detection showed that the components of the blebs were identified with the cytoplasm. Collectively, these results indicated that the simulated microgravity inhibits mouse oocyte maturation via disturbing spindle organization and inducing cytoplasmic blebbing
    corecore