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Almost sure limit theorems for a stationary normal sequence✩
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Abstract

We prove almost sure limit theorems for the maximum of a stationary normal sequence under some conditions.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The almost sure central limit theorem (ASCLT) was first discovered independently by Schatte [1] and Brosamler [2]
for independent identically distributed random variables. Since then, there has been much work in this field. The case
of independent non-identically distributed random variables was considered by Berkes and Dehling [3] and Matúla [4].
Recently ASCLT has been extended to the maxima of independent identically distributed random variables by Fahrner
and Stadtmüller [5] and Cheng et al. [6].

The general form of the ASCLT is as follows. If {Xn, n ≥ 1} is a sequence of random variables with partial sums
Sn = ∑n

i=1 Xi satisfying an(Sn − bn)
d−−−−→ G for some numerical sequences {an}, {bn} and distribution function

G, then under some conditions we have

lim
n→∞

1

log n

n∑
k=1

1

k
I{ak(Sk−bk)≤x} = G(x) a.s.

for any continuity point x of G, where I is the indicator function.
Csáki and Gonchigdanzan [7] studied ASCLT for the maximum of a stationary normal sequence:

Theorem A. Let Z1, Z2, . . ., be a standardized stationary normal sequence with rn = cov(X1, Xn+1) satisfying
rn log n(log log n)1+ε = O(1) as n → ∞. Then
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(1) If n(1 − Φ(un)) → τ for 0 ≤ τ < ∞, then

lim
n→∞

1

log n

n∑
k=1

1

k
I(Mk≤uk) = exp(−τ ) a.s.

where {un, n ≥ 1} is a sequence of constants.

(2) If an = √
2 log n and bn = an − 1

2
(log log n+log 4π)

an
, then

lim
n→∞

1

log n

n∑
k=1

1

k
I(ak(Mk−bk)≤x) = exp(− exp(−x)) a.s.

We further study ASCLT for the maximum of a stationary normal sequence.

2. Main results

Suppose that {Xn, n ≥ 1} is a stationary standardized normal sequence with covariance rn = cov(X1, Xn+1) and
Mn = max1≤i≤n{Xi }, Mk,n = maxk+1≤i≤n{Xi }. a ∼ b stands for limx→∞ a(x)

b(x)
= 1. Φ(x) is the standard normal

distribution function and φ(x) is its density function.

Theorem 2.1. Let {Xn, n ≥ 1} be a stationary standardized normal sequence with rn → 0 as n → ∞, and satisfying

1

n

∑
1≤k≤n

|rk | log k exp{γ |rk | log k} ≤ C

(log n)ε
(2.1)

for some ε > 0, γ > 2, C > 0.

(1) If n(1 − Φ(un)) → τ for 0 ≤ τ < ∞, then

lim
n→∞

1

log n

n∑
k=1

1

k
I(Mk≤uk) = exp(−τ ) a.s.

(2) If an = √
2 log n and bn = an − 1

2
(log log n+log 4π)

an
, then

lim
n→∞

1

log n

n∑
k=1

1

k
I(ak(Mk−bk)≤x) = exp(− exp(−x)) a.s.

Theorem 2.2. Let {Xn, n ≥ 1} be a stationary standardized normal sequence with covariance sequence rn, and put
an = √

2 log n and bn = an − 1
2

(log log n+log 4π)
an

. If

n−1∑
k=1

|rk |(n − k)n−2/(1+|rk |)(log n)1/(1+|rk |) ≤ C

(log n)ε
(2.2)

for some ε > 0, C > 0. Then

lim
n→∞

1

log n

n∑
k=1

1

k
I(ak(Mk−bk)≤x) = exp(− exp(−x)) a.s.

Remark. If condition (2.1) is replaced by

1

n

∑
1≤k≤n

|rk | log k ≤ C

(log n)ε
,

the conclusions of Theorem 2.1 are still true. If C/(log n)ε is replaced by C/(log log n)(1+ε), the results of the
theorems still hold.
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3. Proof of main result

We need the following lemmas for the proof of the main result.

Lemma 3.1. Let {Xn, n ≥ 1} be a stationary standardized normal sequence. Assume that rn → 0 as n → ∞, and rn

satisfies (2.1). If n(1 − Φ(un)) is bounded, then

sup
1≤k≤n

k
n∑

j=1

|r j | exp

(
− u2

k + u2
n

2(1 + |r j |)

)
≤ A

(log n)ε

for some ε > 0, A > 0.

Proof. Since rn → 0 as n → ∞, we have δ � supn≥1 |rn | < 1 (cf. [8], p. 86). By assumption n(1 − Φ(un)) ≤ K for
some constant K > 0. Let {vn, n ≥ 1} be a sequence such that n(1 − Φ(vn)) = K if n > K , vn = un if n ≤ K . Then
clearly vn ≤ un and hence

k
n∑

j=1

|r j | exp

(
− u2

k + u2
n

2(1 + |r j |)

)
≤ k

n∑
j=1

|r j | exp

(
− v2

k + v2
n

2(1 + |r j |)

)
.

Thus it is enough to prove the lemma for the sequence {vn, n ≥ 1}. Since 1 − Φ(x) ∼ φ(x)/x, x → ∞, we can see
that

exp

(
−v2

n

2

)
∼ K

√
2πvn

n
, vn ∼ √

2 log n. (3.1)

Take β = 2/γ . Define α to be 0 < α < min(β, 1−δ
1+δ

). Note that

k
n∑

j=1

|r j | exp

(
− v2

k + v2
n

2(1 + |r j |)

)
= k

[nα ]∑
j=1

|r j | exp

(
− v2

k + v2
n

2(1 + |r j |)

)
+ k

[nβ ]∑
j=[nα ]+1

|r j | exp

(
− v2

k + v2
n

2(1 + |r j |)

)

+ k
n∑

j=[nβ ]+1

|r j | exp

(
− v2

k + v2
n

2(1 + |r j |)

)

� T1 + T2 + T3.

Using (3.1)

T1 ≤ knα exp

(
− v2

k + v2
n

2(1 + δ)

)
= knα

(
exp

(
−v2

k + v2
n

2

)) 1
1+δ

≤ Cknα
(vkvn

kn

) 1
1+δ ≤ Ck1− 1

1+δ nα− 1
1+δ (log k log n)

1
2(1+δ)

≤ Cn1+α− 2
1+δ (log n)

1
1+δ ,

where C is a positive constant, whose value is irrelevant.
Since 1 + α − 2

1+δ
< 0, we get T1 ≤ n−σ for some σ > 0, uniformly for 1 ≤ k ≤ n. Writing

δn = sup
m≥n

|rm |, p = [nα], q = [nβ ],

using (3.1) again, we have

T2 ≤ k exp

(
−v2

k + v2
n

2

)
q∑

j=p+1

exp

(
|r j |(v2

k + v2
n)

2(1 + |r j |)

)

≤ knβ exp

(
−v2

k + v2
n

2

)
exp

(
δp(v

2
k + v2

n)

2

)
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= knβ

(
exp

(
−v2

k + v2
n

2

))1−δp

≤ Cknβ

(√
log k log n

kn

)1−δp

≤ Cn−1+β+2δp log n.

Noting that δn = supm≥[nα ] |rm | → 0 as n → ∞, we get T2 ≤ n−η for some η > 0. Finally, again using (3.1), we
have

T3 = k
n∑

j=q+1

|r j |
(

exp

(
−v2

k + v2
n

2

)) 1
1+|r j |

≤ Ck
n∑

j=q+1

|r j |
(√

log k log n

kn

) 1
1+|r j |

≤ Cn−1 log n
n∑

j=q+1

|r j | exp(2|r j | log n).

Since j > q , we have log j ≥ β log n, and hence

T3 ≤ Cn−1
n∑

j=q+1

|r j | log j exp(2β−1|r j | log j)

≤ Cn−1
n∑

j=1

|r j | log j exp(2β−1|r j | log j)

≤ Cn−1
n∑

j=1

|r j | log j exp(γ |r j | log j) ≤ C

(log n)ε
.

The proof is completed. �

The following lemma is Theorem 2.1 and Corollary 2.1 in Li and Shao [9]:

Lemma 3.2. (1) Let {Xn, n ≥ 1} and {Yn, n ≥ 1} be sequences of standard normal variables with covariance
matrices R1 = (r1

i j ) and R0 = (r0
i j ) respectively. Put ρi j = max(|r1

i j |, |r0
i j |). Then we have

P

(
n⋂

j=1

{X j ≤ u j }
)

− P

(
n⋂

j=1

{Y j ≤ u j }
)

≤ 1

2π

∑
1≤i< j≤n

(arcsin(r1
i j ) − arcsin(r0

i j ))
+ exp

(
− u2

i + u2
j

2(1 + ρi j )

)

for any real numbers ui , i = 1, 2, . . . , n.
(2) Let {Xn, n ≥ 1} be standard normal variables with ri j = cov(Xi , X j ). Then∣∣∣∣∣P

(
n⋂

j=1

(X j ≤ u j )

)
−

n∏
j=1

P(X j ≤ u j )

∣∣∣∣∣ ≤ 1

4

∑
1≤i< j≤n

|ri j | exp

(
− u2

i + u2
j

2(1 + |ri j |)

)

for any real numbers ui , i = 1, 2, . . . , n.

Lemma 3.3. Let {Xn, n ≥ 1} be a stationary standardized normal sequence. Assume that rn → 0 as n → ∞, and rn

satisfies (2.1). If n(1 − Φ(un)) is bounded, then for 1 ≤ k < n

|P(Mk ≤ uk, Mk,n ≤ un) − P(Mk ≤ uk)P(Mk,n ≤ un)| ≤ C

(log n)ε
,

and

P(Mk,n ≤ un) − P(Mn ≤ un) ≤ k

n
+ C

(log n)ε
.
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Proof. In Lemma 3.2(1) we take Y j = X ′
j , 1 ≤ j ≤ k, Y j = X j , k + 1 ≤ j ≤ n, where X j , 1 ≤ j ≤ k and

X ′
j , 1 ≤ j ≤ k have identical distributions, but X ′

j , 1 ≤ j ≤ k are independent of X j , k + 1 ≤ j ≤ n. Hence

|P(Mk ≤ uk, Mk,n ≤ un) − P(Mk ≤ uk)P(Mk,n ≤ un)| ≤ 1

4

k∑
i=1

n∑
j=k+1

|r j | exp

(
− u2

k + u2
n

2(1 + |r j |)

)

≤ 1

4
k

n∑
j=1

|r j | exp

(
− u2

k + u2
n

2(1 + |r j |)

)
.

From Lemma 3.1 we get the first result.
Note that

P(Mk,n ≤ un) − P(Mn ≤ un) ≤ |P(Mk,n ≤ un) − (Φ(un))n−k | + |P(Mn ≤ un)

− (Φ(un))
n | + |(Φ(un))n−k − (Φ(un))n|

� L1 + L2 + L3.

From the elementary fact that xn−k − xn ≤ k
n , 0 ≤ k ≤ n, we have L3 ≤ k

n . By Lemma 3.2(2), we have

Li ≤ K n
n∑

j=1

|r j | exp

(
− u2

n

1 + |r j |
)

, i = 1, 2.

Thus by Lemma 3.1 we have Li ≤ C
(log n)ε

. The proof is completed. �

The following lemma is from [5]:

Lemma 3.4. Let {ξn, n ≥ 1} be a sequence of bounded random variables, i.e. there exists some M ∈ (0,∞) such that
|ξk | ≤ M a.s. for all k ∈ N, satisfying Eξk → μ as k → ∞. Suppose furthermore that

Var

(
1

log n

n∑
k=1

1

k
ξk

)
≤ C

(log n)ε

for some ε > 0. Then we have

1

log n

n∑
k=1

1

k
ξk → μ a.s. as n → ∞.

Proof of Theorem 2.1. First, we claim that under the assumptions of Lemma 3.1, we have

lim
n→∞

1

log n

n∑
k=1

1

k
(I(Mk≤uk) − P(Mk ≤ uk)) = 0 a.s. (3.2)

By Lemma 3.4 it is sufficient to prove

Var

(
1

log n

n∑
k=1

1

k
I(Mk≤uk)

)
≤ C

(log n)ε
(3.3)

for some ε > 0. Let ξk = I(Mk≤uk) − P(Mk ≤ uk), then

Var

(
1

log n

n∑
k=1

1

k
I(Mk≤uk)

)
= E

(
1

log n

n∑
k=1

1

k
ξk

)2

= 1

(log n)2

(
n∑

k=1

1

k2
E |ξk |2 + 2

∑
1≤k<l≤n

E |ξkξl |
kl

)

� T1 + T2.
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Since |ξk | ≤ 1, it follows that

T1 ≤ 1

(log n)2

n∑
k=1

1

k2
≤ C

(log n)2
. (3.4)

Note that for l > k

|Eξkξl | = |Cov(I(Mk≤uk), I(Ml≤ul ))|
≤ |Cov(I(Mk≤uk), I(Ml≤ul ) − I(Mk,l ≤ul))| + |Cov(I(Mk≤uk), I(Mk,l ≤ul ))|
≤ 2E |I(Ml≤ul ) − I(Mk,l ≤ul )| + |Cov(I(Mk≤uk), I(Mk,l ≤ul ))|.

By Lemma 3.3, we have

|Eξkξl | ≤ 3k

l
+ C

(log l)ε
.

Hence

T2 ≤ 6

(log n)2

∑
1≤k<l≤n

1

kl

k

l
+ 2C

(log n)2

∑
1≤k<l≤n

1

kl(log l)ε

≤ C

(log n)2
log n + C

(log n)2

n∑
l=2

1

l(log l)ε

l−1∑
k=1

1

k

≤ C

log n
+ C

(log n)2

n∑
l=2

log l

l(log l)ε

≤ C

log n
+ C

(log n)2
(log n)2−ε

≤ C

log n
+ C

(log n)ε
. (3.5)

From (3.4) and (3.5), we establish (3.3).
The proof of (1). By the conditions of the theorem and Theorem 4.5.2(ii) in Leadbetter et al. [8], we have

P(Mn ≤ un) → exp(−τ ).

Clearly this implies limn→∞ 1
log n

∑n
k=1

1
k P(Mk ≤ uk) = exp(−τ ), which is, by (3.2), equivalent to

lim
n→∞

1

log n

n∑
k=1

1

k
I(Mk≤uk) = exp(−τ ) a.s.

The proof of (2). By Theorem 4.5.2(iii) in Leadbetter et al. [8], we have n(1−Φ(un)) → exp(−x) for un = x
an

+bn .
Thus from (1) we obtain

lim
n→∞

1

log n

n∑
k=1

1

k
I(ak(Mk−bk)≤x) = exp(− exp(−x)) a.s. �

Proof of Theorem 2.2. Let un = x/an + bn . By the definition of an and bn , we have

u2
n = 2 log n − log log n + O(1) as n → ∞.

Using Lemma 3.2(1), for 1 ≤ k < n

|P(Mk ≤ uk, Mk,n ≤ un) − P(Mk ≤ uk)P(Mk,n ≤ un)| ≤ 1

4

n−1∑
j=1

(n − j)|r j | exp

(
− u2

n

1 + |r j |
)

.

Since (2.2) holds, we get

|P(Mk ≤ uk, Mk,n ≤ un) − P(Mk ≤ uk)P(Mk,n ≤ un)| ≤ C

(log n)ε
.
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Similar to Lemma 3.3, we have

P(Mk,n ≤ un) − P(Mn ≤ un) ≤ k

n
+ C

(log n)ε
.

According to the condition of Theorems 2.2 and 9.2.1 in Berman [10], we have

P(Mn ≤ un) → exp(− exp(−x)).

The rest of proof is similar to that of Theorem 2.1. �
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