Almost sure limit theorems for a stationary normal sequence ${ }^{\text {* }}$

Chen Shouquan ${ }^{\text {a,b,* }}$, Lin Zhengyan ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics, Zhejiang University, Hangzhou 310027, China
${ }^{\mathrm{b}}$ School of Mathematics and Finance, Southwest University, Chongqing, 400715, China
${ }^{\text {c }}$ Department of Mathematics, Zhejiang University, Hangzhou 310028, China

Received 12 December 2005; received in revised form 15 April 2006; accepted 24 April 2006

Abstract

We prove almost sure limit theorems for the maximum of a stationary normal sequence under some conditions. (C) 2006 Elsevier Ltd. All rights reserved.

Keywords: Almost sure limit theorem; Extreme theory; Maximum; Normal comparison inequality; Stationary normal sequence

1. Introduction

The almost sure central limit theorem (ASCLT) was first discovered independently by Schatte [1] and Brosamler [2] for independent identically distributed random variables. Since then, there has been much work in this field. The case of independent non-identically distributed random variables was considered by Berkes and Dehling [3] and Matúla [4]. Recently ASCLT has been extended to the maxima of independent identically distributed random variables by Fahrner and Stadtmüller [5] and Cheng et al. [6].

The general form of the ASCLT is as follows. If $\left\{X_{n}, n \geq 1\right\}$ is a sequence of random variables with partial sums $S_{n}=\sum_{i=1}^{n} X_{i}$ satisfying $a_{n}\left(S_{n}-b_{n}\right) \xrightarrow{d} G$ for some numerical sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and distribution function G, then under some conditions we have

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} I_{\left\{a_{k}\left(S_{k}-b_{k}\right) \leq x\right\}}=G(x) \quad \text { a.s. }
$$

for any continuity point x of G, where I is the indicator function.
Csáki and Gonchigdanzan [7] studied ASCLT for the maximum of a stationary normal sequence:
Theorem A. Let Z_{1}, Z_{2}, \ldots, be a standardized stationary normal sequence with $r_{n}=\operatorname{cov}\left(X_{1}, X_{n+1}\right)$ satisfying $r_{n} \log n(\log \log n)^{1+\varepsilon}=O(1)$ as $n \rightarrow \infty$. Then

[^0](1) If $n\left(1-\Phi\left(u_{n}\right)\right) \rightarrow \tau$ for $0 \leq \tau<\infty$, then
$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} I_{\left(M_{k} \leq u_{k}\right)}=\exp (-\tau) \quad \text { a.s. }
$$
where $\left\{u_{n}, n \geq 1\right\}$ is a sequence of constants.
(2) If $a_{n}=\sqrt{2 \log n}$ and $b_{n}=a_{n}-\frac{1}{2} \frac{(\log \log n+\log 4 \pi)}{a_{n}}$, then
$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} I_{\left(a_{k}\left(M_{k}-b_{k}\right) \leq x\right)}=\exp (-\exp (-x)) \quad \text { a.s. }
$$

We further study ASCLT for the maximum of a stationary normal sequence.

2. Main results

Suppose that $\left\{X_{n}, n \geq 1\right\}$ is a stationary standardized normal sequence with covariance $r_{n}=\operatorname{cov}\left(X_{1}, X_{n+1}\right)$ and $M_{n}=\max _{1 \leq i \leq n}\left\{X_{i}\right\}, M_{k, n}=\max _{k+1 \leq i \leq n}\left\{X_{i}\right\} . a \sim b$ stands for $\lim _{x \rightarrow \infty} \frac{a(x)}{b(x)}=1 . \Phi(x)$ is the standard normal distribution function and $\phi(x)$ is its density function.

Theorem 2.1. Let $\left\{X_{n}, n \geq 1\right\}$ be a stationary standardized normal sequence with $r_{n} \rightarrow 0$ as $n \rightarrow \infty$, and satisfying

$$
\begin{equation*}
\frac{1}{n} \sum_{1 \leq k \leq n}\left|r_{k}\right| \log k \exp \left\{\gamma\left|r_{k}\right| \log k\right\} \leq \frac{C}{(\log n)^{\varepsilon}} \tag{2.1}
\end{equation*}
$$

for some $\varepsilon>0, \gamma>2, C>0$.
(1) If $n\left(1-\Phi\left(u_{n}\right)\right) \rightarrow \tau$ for $0 \leq \tau<\infty$, then

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} I_{\left(M_{k} \leq u_{k}\right)}=\exp (-\tau) \quad \text { a.s. }
$$

(2) If $a_{n}=\sqrt{2 \log n}$ and $b_{n}=a_{n}-\frac{1}{2} \frac{(\log \log n+\log 4 \pi)}{a_{n}}$, then

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} I_{\left(a_{k}\left(M_{k}-b_{k}\right) \leq x\right)}=\exp (-\exp (-x)) \quad \text { a.s. }
$$

Theorem 2.2. Let $\left\{X_{n}, n \geq 1\right\}$ be a stationary standardized normal sequence with covariance sequence r_{n}, and put $a_{n}=\sqrt{2 \log n}$ and $b_{n}=a_{n}-\frac{1}{2} \frac{(\log \log n+\log 4 \pi)}{a_{n}}$. If

$$
\begin{equation*}
\sum_{k=1}^{n-1}\left|r_{k}\right|(n-k) n^{-2 /\left(1+\left|r_{k}\right|\right)}(\log n)^{1 /\left(1+\left|r_{k}\right|\right)} \leq \frac{C}{(\log n)^{\varepsilon}} \tag{2.2}
\end{equation*}
$$

for some $\varepsilon>0, C>0$. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} I_{\left(a_{k}\left(M_{k}-b_{k}\right) \leq x\right)}=\exp (-\exp (-x)) \quad \text { a.s. }
$$

Remark. If condition (2.1) is replaced by

$$
\frac{1}{n} \sum_{1 \leq k \leq n}\left|r_{k}\right| \log k \leq \frac{C}{(\log n)^{\varepsilon}}
$$

the conclusions of Theorem 2.1 are still true. If $C /(\log n)^{\varepsilon}$ is replaced by $C /(\log \log n)^{(1+\varepsilon)}$, the results of the theorems still hold.

3. Proof of main result

We need the following lemmas for the proof of the main result.
Lemma 3.1. Let $\left\{X_{n}, n \geq 1\right\}$ be a stationary standardized normal sequence. Assume that $r_{n} \rightarrow 0$ as $n \rightarrow \infty$, and r_{n} satisfies (2.1). If $n\left(1-\Phi\left(u_{n}\right)\right)$ is bounded, then

$$
\sup _{1 \leq k \leq n} k \sum_{j=1}^{n}\left|r_{j}\right| \exp \left(-\frac{u_{k}^{2}+u_{n}^{2}}{2\left(1+\left|r_{j}\right|\right)}\right) \leq \frac{A}{(\log n)^{\varepsilon}}
$$

for some $\varepsilon>0, A>0$.
Proof. Since $r_{n} \rightarrow 0$ as $n \rightarrow \infty$, we have $\delta \triangleq \sup _{n \geq 1}\left|r_{n}\right|<1$ (cf. [8], p. 86). By assumption $n\left(1-\Phi\left(u_{n}\right)\right) \leq K$ for some constant $K>0$. Let $\left\{v_{n}, n \geq 1\right\}$ be a sequence such that $n\left(1-\Phi\left(v_{n}\right)\right)=K$ if $n>K, v_{n}=u_{n}$ if $n \leq K$. Then clearly $v_{n} \leq u_{n}$ and hence

$$
k \sum_{j=1}^{n}\left|r_{j}\right| \exp \left(-\frac{u_{k}^{2}+u_{n}^{2}}{2\left(1+\left|r_{j}\right|\right)}\right) \leq k \sum_{j=1}^{n}\left|r_{j}\right| \exp \left(-\frac{v_{k}^{2}+v_{n}^{2}}{2\left(1+\left|r_{j}\right|\right)}\right) .
$$

Thus it is enough to prove the lemma for the sequence $\left\{v_{n}, n \geq 1\right\}$. Since $1-\Phi(x) \sim \phi(x) / x, x \rightarrow \infty$, we can see that

$$
\begin{equation*}
\exp \left(-\frac{v_{n}^{2}}{2}\right) \sim \frac{K \sqrt{2 \pi} v_{n}}{n}, \quad v_{n} \sim \sqrt{2 \log n} \tag{3.1}
\end{equation*}
$$

Take $\beta=2 / \gamma$. Define α to be $0<\alpha<\min \left(\beta, \frac{1-\delta}{1+\delta}\right)$. Note that

$$
\begin{aligned}
k \sum_{j=1}^{n}\left|r_{j}\right| \exp \left(-\frac{v_{k}^{2}+v_{n}^{2}}{2\left(1+\left|r_{j}\right|\right)}\right)= & k \sum_{j=1}^{\left[n^{\alpha}\right]}\left|r_{j}\right| \exp \left(-\frac{v_{k}^{2}+v_{n}^{2}}{2\left(1+\left|r_{j}\right|\right)}\right)+k \sum_{j=\left[n^{\alpha}\right]+1}^{\left[n^{\beta}\right]}\left|r_{j}\right| \exp \left(-\frac{v_{k}^{2}+v_{n}^{2}}{2\left(1+\left|r_{j}\right|\right)}\right) \\
& +k \sum_{j=\left[n^{\beta}\right]+1}^{n}\left|r_{j}\right| \exp \left(-\frac{v_{k}^{2}+v_{n}^{2}}{2\left(1+\left|r_{j}\right|\right)}\right) \\
& \triangleq T_{1}+T_{2}+T_{3} .
\end{aligned}
$$

Using (3.1)

$$
\begin{aligned}
T_{1} & \leq k n^{\alpha} \exp \left(-\frac{v_{k}^{2}+v_{n}^{2}}{2(1+\delta)}\right)=k n^{\alpha}\left(\exp \left(-\frac{v_{k}^{2}+v_{n}^{2}}{2}\right)\right)^{\frac{1}{1+\delta}} \\
& \leq C k n^{\alpha}\left(\frac{v_{k} v_{n}}{k n}\right)^{\frac{1}{1+\delta}} \leq C k^{1-\frac{1}{1+\delta} n^{\alpha-\frac{1}{1+\delta}}(\log k \log n)^{\frac{1}{2(1+\delta)}}} \\
& \leq C n^{1+\alpha-\frac{2}{1+\delta}}(\log n)^{\frac{1}{1+\delta}},
\end{aligned}
$$

where C is a positive constant, whose value is irrelevant.
Since $1+\alpha-\frac{2}{1+\delta}<0$, we get $T_{1} \leq n^{-\sigma}$ for some $\sigma>0$, uniformly for $1 \leq k \leq n$. Writing

$$
\delta_{n}=\sup _{m \geq n}\left|r_{m}\right|, \quad p=\left[n^{\alpha}\right], \quad q=\left[n^{\beta}\right],
$$

using (3.1) again, we have

$$
\begin{aligned}
T_{2} & \leq k \exp \left(-\frac{v_{k}^{2}+v_{n}^{2}}{2}\right) \sum_{j=p+1}^{q} \exp \left(\frac{\left|r_{j}\right|\left(v_{k}^{2}+v_{n}^{2}\right)}{2\left(1+\left|r_{j}\right|\right)}\right) \\
& \leq k n^{\beta} \exp \left(-\frac{v_{k}^{2}+v_{n}^{2}}{2}\right) \exp \left(\frac{\delta_{p}\left(v_{k}^{2}+v_{n}^{2}\right)}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =k n^{\beta}\left(\exp \left(-\frac{v_{k}^{2}+v_{n}^{2}}{2}\right)\right)^{1-\delta_{p}} \leq C k n^{\beta}\left(\frac{\sqrt{\log k \log n}}{k n}\right)^{1-\delta_{p}} \\
& \leq C n^{-1+\beta+2 \delta_{p}} \log n
\end{aligned}
$$

Noting that $\delta_{n}=\sup _{m \geq\left[n^{\alpha}\right]}\left|r_{m}\right| \rightarrow 0$ as $n \rightarrow \infty$, we get $T_{2} \leq n^{-\eta}$ for some $\eta>0$. Finally, again using (3.1), we have

$$
\begin{aligned}
T_{3} & =k \sum_{j=q+1}^{n}\left|r_{j}\right|\left(\exp \left(-\frac{v_{k}^{2}+v_{n}^{2}}{2}\right)\right)^{\frac{1}{1++r_{j} \mid}} \leq C k \sum_{j=q+1}^{n}\left|r_{j}\right|\left(\frac{\sqrt{\log k \log n}}{k n}\right)^{\frac{1}{1+\left|r_{j}\right|}} \\
& \leq C n^{-1} \log n \sum_{j=q+1}^{n}\left|r_{j}\right| \exp \left(2\left|r_{j}\right| \log n\right)
\end{aligned}
$$

Since $j>q$, we have $\log j \geq \beta \log n$, and hence

$$
\begin{aligned}
T_{3} & \leq C n^{-1} \sum_{j=q+1}^{n}\left|r_{j}\right| \log j \exp \left(2 \beta^{-1}\left|r_{j}\right| \log j\right) \\
& \leq C n^{-1} \sum_{j=1}^{n}\left|r_{j}\right| \log j \exp \left(2 \beta^{-1}\left|r_{j}\right| \log j\right) \\
& \leq C n^{-1} \sum_{j=1}^{n}\left|r_{j}\right| \log j \exp \left(\gamma\left|r_{j}\right| \log j\right) \leq \frac{C}{(\log n)^{\varepsilon}} .
\end{aligned}
$$

The proof is completed.
The following lemma is Theorem 2.1 and Corollary 2.1 in Li and Shao [9]:
Lemma 3.2. (1) Let $\left\{X_{n}, n \geq 1\right\}$ and $\left\{Y_{n}, n \geq 1\right\}$ be sequences of standard normal variables with covariance matrices $R^{1}=\left(r_{i j}^{1}\right)$ and $R^{0}=\left(r_{i j}^{0}\right)$ respectively. Put $\rho_{i j}=\max \left(\left|r_{i j}^{1}\right|,\left|r_{i j}^{0}\right|\right)$. Then we have

$$
\begin{aligned}
& P\left(\bigcap_{j=1}^{n}\left\{X_{j} \leq u_{j}\right\}\right)-P\left(\bigcap_{j=1}^{n}\left\{Y_{j} \leq u_{j}\right\}\right) \\
& \quad \leq \frac{1}{2 \pi} \sum_{1 \leq i<j \leq n}\left(\arcsin \left(r_{i j}^{1}\right)-\arcsin \left(r_{i j}^{0}\right)\right)^{+} \exp \left(-\frac{u_{i}^{2}+u_{j}^{2}}{2\left(1+\rho_{i j}\right)}\right)
\end{aligned}
$$

for any real numbers $u_{i}, i=1,2, \ldots, n$.
(2) Let $\left\{X_{n}, n \geq 1\right\}$ be standard normal variables with $r_{i j}=\operatorname{cov}\left(X_{i}, X_{j}\right)$. Then

$$
\left|P\left(\bigcap_{j=1}^{n}\left(X_{j} \leq u_{j}\right)\right)-\prod_{j=1}^{n} P\left(X_{j} \leq u_{j}\right)\right| \leq \frac{1}{4} \sum_{1 \leq i<j \leq n}\left|r_{i j}\right| \exp \left(-\frac{u_{i}^{2}+u_{j}^{2}}{2\left(1+\left|r_{i j}\right|\right)}\right)
$$

for any real numbers $u_{i}, i=1,2, \ldots, n$.
Lemma 3.3. Let $\left\{X_{n}, n \geq 1\right\}$ be a stationary standardized normal sequence. Assume that $r_{n} \rightarrow 0$ as $n \rightarrow \infty$, and r_{n} satisfies (2.1). If $n\left(1-\Phi\left(u_{n}\right)\right)$ is bounded, then for $1 \leq k<n$

$$
\left|P\left(M_{k} \leq u_{k}, M_{k, n} \leq u_{n}\right)-P\left(M_{k} \leq u_{k}\right) P\left(M_{k, n} \leq u_{n}\right)\right| \leq \frac{C}{(\log n)^{\varepsilon}}
$$

and

$$
P\left(M_{k, n} \leq u_{n}\right)-P\left(M_{n} \leq u_{n}\right) \leq \frac{k}{n}+\frac{C}{(\log n)^{\varepsilon}}
$$

Proof. In Lemma 3.2(1) we take $Y_{j}=X_{j}^{\prime}, 1 \leq j \leq k, Y_{j}=X_{j}, k+1 \leq j \leq n$, where $X_{j}, 1 \leq j \leq k$ and $X_{j}^{\prime}, 1 \leq j \leq k$ have identical distributions, but $X_{j}^{\prime}, 1 \leq j \leq k$ are independent of $X_{j}, k+1 \leq j \leq n$. Hence

$$
\begin{aligned}
\mid P\left(M_{k}\right. & \left.\leq u_{k}, M_{k, n} \leq u_{n}\right) \left.-P\left(M_{k} \leq u_{k}\right) P\left(M_{k, n} \leq u_{n}\right)\left|\leq \frac{1}{4} \sum_{i=1}^{k} \sum_{j=k+1}^{n}\right| r_{j} \right\rvert\, \exp \left(-\frac{u_{k}^{2}+u_{n}^{2}}{2\left(1+\left|r_{j}\right|\right)}\right) \\
& \leq \frac{1}{4} k \sum_{j=1}^{n}\left|r_{j}\right| \exp \left(-\frac{u_{k}^{2}+u_{n}^{2}}{2\left(1+\left|r_{j}\right|\right)}\right) .
\end{aligned}
$$

From Lemma 3.1 we get the first result.
Note that

$$
\begin{aligned}
P\left(M_{k, n} \leq u_{n}\right)-P\left(M_{n} \leq u_{n}\right) \leq & \left|P\left(M_{k, n} \leq u_{n}\right)-\left(\Phi\left(u_{n}\right)\right)^{n-k}\right|+\mid P\left(M_{n} \leq u_{n}\right) \\
& -\left(\Phi\left(u_{n}\right)\right)^{n}\left|+\left|\left(\Phi\left(u_{n}\right)\right)^{n-k}-\left(\Phi\left(u_{n}\right)\right)^{n}\right|\right. \\
\triangleq & L_{1}+L_{2}+L_{3} .
\end{aligned}
$$

From the elementary fact that $x^{n-k}-x^{n} \leq \frac{k}{n}, 0 \leq k \leq n$, we have $L_{3} \leq \frac{k}{n}$. By Lemma 3.2(2), we have

$$
L_{i} \leq K n \sum_{j=1}^{n}\left|r_{j}\right| \exp \left(-\frac{u_{n}^{2}}{1+\left|r_{j}\right|}\right), \quad i=1,2 .
$$

Thus by Lemma 3.1 we have $L_{i} \leq \frac{C}{(\log n)^{\varepsilon}}$. The proof is completed.
The following lemma is from [5]:
Lemma 3.4. Let $\left\{\xi_{n}, n \geq 1\right\}$ be a sequence of bounded random variables, i.e. there exists some $M \in(0, \infty)$ such that $\left|\xi_{k}\right| \leq M$ a.s. for all $k \in N$, satisfying $E \xi_{k} \rightarrow \mu$ as $k \rightarrow \infty$. Suppose furthermore that

$$
\operatorname{Var}\left(\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \xi_{k}\right) \leq \frac{C}{(\log n)^{\varepsilon}}
$$

for some $\varepsilon>0$. Then we have

$$
\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \xi_{k} \rightarrow \mu \quad \text { a.s. as } n \rightarrow \infty .
$$

Proof of Theorem 2.1. First, we claim that under the assumptions of Lemma 3.1, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k}\left(I_{\left(M_{k} \leq u_{k}\right)}-P\left(M_{k} \leq u_{k}\right)\right)=0 \quad \text { a.s. } \tag{3.2}
\end{equation*}
$$

By Lemma 3.4 it is sufficient to prove

$$
\begin{equation*}
\operatorname{Var}\left(\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} I_{\left(M_{k} \leq u_{k}\right)}\right) \leq \frac{C}{(\log n)^{\varepsilon}} \tag{3.3}
\end{equation*}
$$

for some $\varepsilon>0$. Let $\xi_{k}=I_{\left(M_{k} \leq u_{k}\right)}-P\left(M_{k} \leq u_{k}\right)$, then

$$
\begin{aligned}
\operatorname{Var}\left(\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} I_{\left(M_{k} \leq u_{k}\right)}\right) & =E\left(\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \xi_{k}\right)^{2} \\
& =\frac{1}{(\log n)^{2}}\left(\sum_{k=1}^{n} \frac{1}{k^{2}} E\left|\xi_{k}\right|^{2}+2 \sum_{1 \leq k<l \leq n} \frac{E\left|\xi_{k} \xi_{l}\right|}{k l}\right) \\
& \triangleq T_{1}+T_{2} .
\end{aligned}
$$

Since $\left|\xi_{k}\right| \leq 1$, it follows that

$$
\begin{equation*}
T_{1} \leq \frac{1}{(\log n)^{2}} \sum_{k=1}^{n} \frac{1}{k^{2}} \leq \frac{C}{(\log n)^{2}} . \tag{3.4}
\end{equation*}
$$

Note that for $l>k$

$$
\begin{aligned}
\left|E \xi_{k} \xi_{l}\right| & =\left|\operatorname{Cov}\left(I_{\left(M_{k} \leq u_{k}\right)}, I_{\left(M_{l} \leq u_{l}\right)}\right)\right| \\
& \leq\left|\operatorname{Cov}\left(I_{\left(M_{k} \leq u_{k}\right)}, I_{\left(M_{l} \leq u_{l}\right)}-I_{\left(M_{k, l} \leq u_{l}\right)}\right)\right|+\left|\operatorname{Cov}\left(I_{\left(M_{k} \leq u_{k}\right)}, I_{\left(M_{k, l} \leq u_{l}\right)}\right)\right| \\
& \leq 2 E\left|I_{\left(M_{l} \leq u_{l}\right)}-I_{\left(M_{k, l} \leq u_{l}\right)}\right|+\left|\operatorname{Cov}\left(I_{\left(M_{k} \leq u_{k}\right)}, I_{\left(M_{k, l} \leq u_{l}\right)}\right)\right| .
\end{aligned}
$$

By Lemma 3.3, we have

$$
\left|E \xi_{k} \xi_{l}\right| \leq \frac{3 k}{l}+\frac{C}{(\log l)^{\varepsilon}}
$$

Hence

$$
\begin{align*}
T_{2} & \leq \frac{6}{(\log n)^{2}} \sum_{1 \leq k<l \leq n} \frac{1}{k l} \frac{k}{l}+\frac{2 C}{(\log n)^{2}} \sum_{1 \leq k<l \leq n} \frac{1}{k l(\log l)^{\varepsilon}} \\
& \leq \frac{C}{(\log n)^{2}} \log n+\frac{C}{(\log n)^{2}} \sum_{l=2}^{n} \frac{1}{l(\log l)^{\varepsilon}} \sum_{k=1}^{l-1} \frac{1}{k} \\
& \leq \frac{C}{\log n}+\frac{C}{(\log n)^{2}} \sum_{l=2}^{n} \frac{\log l}{l(\log l)^{\varepsilon}} \\
& \leq \frac{C}{\log n}+\frac{C}{(\log n)^{2}}(\log n)^{2-\varepsilon} \\
& \leq \frac{C}{\log n}+\frac{C}{(\log n)^{\varepsilon}} . \tag{3.5}
\end{align*}
$$

From (3.4) and (3.5), we establish (3.3).
The proof of (1). By the conditions of the theorem and Theorem 4.5.2(ii) in Leadbetter et al. [8], we have

$$
P\left(M_{n} \leq u_{n}\right) \rightarrow \exp (-\tau) .
$$

Clearly this implies $\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} P\left(M_{k} \leq u_{k}\right)=\exp (-\tau)$, which is, by (3.2), equivalent to

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} I_{\left(M_{k} \leq u_{k}\right)}=\exp (-\tau) \quad \text { a.s. }
$$

The proof of (2). By Theorem 4.5.2(iii) in Leadbetter et al. [8], we have $n\left(1-\Phi\left(u_{n}\right)\right) \rightarrow \exp (-x)$ for $u_{n}=\frac{x}{a_{n}}+b_{n}$. Thus from (1) we obtain

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} I_{\left(a_{k}\left(M_{k}-b_{k}\right) \leq x\right)}=\exp (-\exp (-x)) \quad \text { a.s. }
$$

Proof of Theorem 2.2. Let $u_{n}=x / a_{n}+b_{n}$. By the definition of a_{n} and b_{n}, we have

$$
u_{n}^{2}=2 \log n-\log \log n+O(1) \quad \text { as } n \rightarrow \infty .
$$

Using Lemma 3.2(1), for $1 \leq k<n$

$$
\left|P\left(M_{k} \leq u_{k}, M_{k, n} \leq u_{n}\right)-P\left(M_{k} \leq u_{k}\right) P\left(M_{k, n} \leq u_{n}\right)\right| \leq \frac{1}{4} \sum_{j=1}^{n-1}(n-j)\left|r_{j}\right| \exp \left(-\frac{u_{n}^{2}}{1+\left|r_{j}\right|}\right) .
$$

Since (2.2) holds, we get

$$
\left|P\left(M_{k} \leq u_{k}, M_{k, n} \leq u_{n}\right)-P\left(M_{k} \leq u_{k}\right) P\left(M_{k, n} \leq u_{n}\right)\right| \leq \frac{C}{(\log n)^{\varepsilon}} .
$$

Similar to Lemma 3.3, we have

$$
P\left(M_{k, n} \leq u_{n}\right)-P\left(M_{n} \leq u_{n}\right) \leq \frac{k}{n}+\frac{C}{(\log n)^{\varepsilon}} .
$$

According to the condition of Theorems 2.2 and 9.2.1 in Berman [10], we have

$$
P\left(M_{n} \leq u_{n}\right) \rightarrow \exp (-\exp (-x)) .
$$

The rest of proof is similar to that of Theorem 2.1.

Acknowledgement

We thank the referee for a careful reading of the manuscript and constructive comments.

References

[1] P. Schatte, On strong versions of the central limit theorem, Math. Nachr. 137 (1988) 249-256.
[2] G.A. Brosamler, An almost everywhere central limit theorem, Math. Proc. Cambridge Philos. Soc. 104 (1988) 561-574.
[3] I. Berkes, H. Dehling, Some limit theorems in log density, Ann. Probab. 21 (1993) 1640-1670.
[4] P. Matúla, On the almost sure central limit theorem for associated random variables, Probab. Math. Statist. 18 (2) (1998) $411-416$.
[5] I. Fahrner, U. Stadtmüller, On almost sure central max-limit theorems, Statist. Probab. Lett. 37 (1998) 229-236.
[6] S. Cheng, L. Peng, Y. Qi, Almost sure convergence in extreme value theory, Math. Nachr. 190 (1998) 43-50.
[7] E. Csáki, K. Gonchigdanzan, Almost sure limit theorems for the maximum of stationary Gaussian sequences, Statist. Probab. Lett. 58 (2002) 195-203.
[8] M.R. Leadbetter, G. Lindgren, H. Rootzen, Extremes and Related Properties of Sequences and Processes, Springer, New York, 1983.
[9] W.V. Li, Q.M. Shao, A normal comparison inequality and its applications, Probab. Theory Related Fields 122 (2002) 494-508.
[10] S.M. Berman, Sojourns and Extremes of Stochastic Processes, Wadsworth, Belmont, California, 1992.

[^0]: ${ }^{2}$ Project supported by NSFC (10571159) and SRFDP (2002335090).

 * Corresponding author at: Department of Mathematics, Zhejiang University, Hangzhou 310027, China.

 E-mail addresses: sqchen@swu.edu.cn (C. Shouquan), zlin@zju.edu.cn (L. Zhengyan).

