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Abstract

‘We prove almost sure limit theorems for the maximum of a stationary normal sequence under some conditions.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The almost sure central limit theorem (ASCLT) was first discovered independently by Schatte [1] and Brosamler [2]
for independent identically distributed random variables. Since then, there has been much work in this field. The case
of independent non-identically distributed random variables was considered by Berkes and Dehling [3] and Matila [4].
Recently ASCLT has been extended to the maxima of independent identically distributed random variables by Fahrner
and Stadtmiiller [5] and Cheng et al. [6].

The general form of the ASCLT is as follows. If {X,,, n > 1} is a sequence of random variables with partial sums
Sy = Z?:] X; satisfying an(Sy — by) L) G for some numerical sequences {a,}, {b,} and distribution function
G, then under some conditions we have

li 1 & 11 o
n=00 logn ]; 7 Nlax(Si—b=xy = G(x)  as.

for any continuity point x of G, where [ is the indicator function.
Csdki and Gonchigdanzan [7] studied ASCLT for the maximum of a stationary normal sequence:

Theorem A. Let Z1, Z3, ..., be a standardized stationary normal sequence with r, = cov(X1, X,+1) satisfying
rplogn(loglogn)'*¢ = O(1) as n — oo. Then
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(D) If n(1 — &(uy)) — 1 for 0 <t < 00, then

lim

Jim logn Z Iy <up) = €xp(—1)  a.s.

where {u,,n > 1} is a sequence of constants.
(2) If a, = \/2logn and b, = a, — %w, then

an

lim —— 3L =
w5 Togn ]; i Nax(—bp<x) = exp(—exp(=x))  a.s.

We further study ASCLT for the maximum of a stationary normal sequence.
2. Main results

Suppose that {X,,, n > 1} is a stationary standardized normal sequence with covariance r,, = cov(X1, X,+1) and
M, = maxj<j<p{X;}, Mk, = maxgsi<i<n{X;}. a ~ b stands for limy_, Zg; = 1. &(x) is the standard normal
distribution function and ¢ (x) is its density function.

Theorem 2.1. Let {X,,, n > 1} be a stationary standardized normal sequence with r, — 0 as n — oo, and satisfying

1
— > Irellogkexply|ri|logk}) < (2.1)

e (logn)®
forsomee >0,y >2,C > 0.

(D) If n(1 — &(uy)) — 1 for 0 <t < 00, then

lim
n—00 log n

(2) If a, = \/2logn and b, = a, — %w, then

an

Z I(My<up) = exp(—v)  @-S.

A, Togn 2k (ax(My—b)<x) = eXp(—exp(=x)) a.s.

Theorem 2.2. Let {X,,n > 1} be a stationary standardized normal sequence with covariance sequence ry, and put
= — loglog n+log 4
= ,/2logn and b, = a, — %(Og#nog”). If

n—1
3 Ireln — kom0 Gog /041D < 02
k=1 (logn)®

for some ¢ > 0, C > 0. Then

im YL =
A, fogn ; 7 N —by <) = exp(—exp(—x)) a.s.

Remark. If condition (2.1) is replaced by

C
logk <
— Y Irkllogk < (ogny”

1<k<n

the conclusions of Theorem 2.1 are still true. If C/(logn)? is replaced by C/(loglogn)1+®) the results of the
theorems still hold.



318 C. Shouquan, L. Zhengyan / Applied Mathematics Letters 20 (2007) 316-322
3. Proof of main result

We need the following lemmas for the proof of the main result.

Lemma 3.1. Let {X,,, n > 1} be a stationary standardized normal sequence. Assume that r, — 0 asn — 00, and ry,
satisfies (2.1). If n(1 — @(uy,)) is bounded, then

24,2
u; +u A
supkE |rjlex p(_Z(lk n ><

12ken +1rjD) ) = dogny®

forsomee >0, A > 0.

Proof. Since r, — 0 asn — oo, we have § = sup,>1 Ira| < 1 (cf. [8], p. 86). By assumption n(1 — &#(u,)) < K for
some constant K > 0. Let {v,, n > 1} be a sequence such that n(1 — ®(v,)) = K ifn > K, v, = u, if n < K. Then
clearly v, < u, and hence

k 2 k+v
Z'r"eXp 2(1+| erflep 200+ Ir;)

Thus it is enough to prove the lemma for the sequence {v,,n > 1}. Since 1 — &(x) ~

¢(x)/x,x — 00, we can see
that

( v%) K/ 2mv,
exp )

n

~ /2logn. 3.1

Take 8 = 2/y. Define @ tobe 0 < o < min(S, 1+5) Note that

2 ) [nP] 2 2
2 + 02 v, +v
o ) e 2L ) AP MR o)

=l 2(1+rjD)
& v2 + v?
+k Y rjlexp (—7’< n )
j=[nP1+1 21+ i
ET+Th+Ts.
Using (3.1)
1
2.2 24 .2\\ 8
vy +v vy +v
Ty < kn®exp | ——*—2 ) = kn® |exp [ -*—2
2(149) 2
< Ckn® (l)zj)m < Ckl‘llﬂn“‘llﬂ(logklogn) i)
n

2 1
< CnH'a 1+ (log n) T+3

where C is a positive constant, whose value is irrelevant.
Since 1 + o — 1% < 0,we get Ty < n~? for some o > 0, uniformly for 1 < k < n. Writing

Sp=sup |rml, p=I[n%l, q=I[nP],

m>n

using (3.1) again, we have

2 2 q 2 2
vy + v |ril(vy +v;)
T, <k 1) Lok no
2= eXp( 2 ) . exP( 2(1+ Irj])

j=p+1

2 2 2 2
< kb exp <_vk ;%(w)
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PTG B 1-3,
o (exp <_&)) - Cln (Lg’mg )

2 kn
< Cn~ P2 jogn.

Noting that §,, = SUP,yy > [] |rm| — 0asn — oo, we get T» < n~" for some n > 0. Finally, again using (3.1), we

have
n vZ 42 ”" Jlogklogn ”"‘
Ts=k2"f'(e""<‘kz” <ck Yy (LB

Jj=q+1 j=q+1

n
< Cnllogn Y |rjlexp(2|r|logn).
j=q+1

Since j > g, we have log j > flogn, and hence

n
Ty < Cn' ) Irjllog jexp(2B~"Ir;llog j)
Jj=q+1

n
Cn™" ) " Irjllog j exp(2B~"|r;|log j)
j=1

n
< Cn™! ; Irjlog j exp(yIrjllog ) < G
The proof is completed. O

The following lemma is Theorem 2.1 and Corollary 2.1 in Li and Shao [9]:

Lemma 3.2. (1) Let {Xn, n > 1} and {Y,,n > 1} be sequences of standard normal variables with covariance

matrices R! = (r ) and RO = (r ) respectively. Put p;j = maX(Ir [, Ir |). Then we have

P (m{Xj < u]}) - P (m{Y]‘ < I/t]})
j=1 j=1

1 u? +u?
B B . ity
<5 Z (arcsm(l’,]) arCSln(’z])) exp ( 2(1 + ,Oij))

1<i<j<n

for any real numbers u;, i =1,2,...,n.
(2) Let {Xy, n > 1} be standard normal variables with r;j = cov(X;, X j). Then

n n 1 u2+u2
P X. <u))— PX: <u)l <= .. __ ! J

1<i<j<n
for any real numbers u;, i =1,2,...,n.

Lemma 3.3. Let {X,, n > 1} be a stationary standardized normal sequence. Assume that r, — 0 asn — 0o, and ry,
satisfies (2.1). If n(1 — ®(u,)) is bounded, then for 1 < k <n

[P(My < ug, My <up) — P(My <ur)P(Mip < up)| <

(logn)®’
and
C

k
P(Mkn <u,)— PM, <un)< -
(logn)b“
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Proof. In Lemma 3.2(1) we take ¥; = X}, 1<
X}, 1 < j < k have identical distributions, but X}, 1

k,Yj = Xj,k+1 < j < n,where X;,1 < j < k and

<
< J < k are independentof X,k + 1 < j < n. Hence

| P (M

IA

—I—u
e, My < tt) — P(My < up) P(Min < un)|<—Z Z |r,|ep( a )

py ¥y 2(L+ 1D
-I—u
Uy
_kZ|r]|exp( 20 +1r; |)>

From Lemma 3.1 we get the first result.
Note that

I/\

— (D un)"| + (D))" — (D))"
£ Li+Ly+Ls.

P(Myp < tty) — P(My < ttp) < |[P(Min < un) = (Bn))" |+ |P(My < uy)

From the elementary fact that Xk xn < %, 0 <k <n,wehave L3 < % By Lemma 3.2(2), we have

n u2 .
Li < Knerj|exp<—1+'|zrj|>, i=1,2.

j=1

Thus by Lemma 3.1 we have L; The proof is completed. O

= (IOgn)‘
The following lemma is from [5]:

Lemma 3.4. Let {&,, n > 1} be a sequence of bounded random variables, i.e. there exists some M € (0, 00) such that
&l < M a.s. forall k € N, satisfying E& — w as k — 00. Suppose furthermore that

I & C
V: -& ) <
o <logn ; kék) ~ (logn)®

for some ¢ > 0. Then we have

1 &1
Z—gkeu a.s.as n—> oo.
logn =k

Proof of Theorem 2.1. First, we claim that under the assumptions of Lemma 3.1, we have

lim
n—00 ]()g n

Z Uy=upy = P(Mi <)) =0 as. (32)

By Lemma 3.4 it is sufficient to prove

Var [ Xn: L < ¢ 3.3)
a - :
t logn &~ k M=o | = (logn)e

for some ¢ > 0. Let & = Iy, <u;) — P(My < uy), then

1 &1 o\
V. —1 =E -
a <logn ;k (M"<”k)) (logn gk§k>
1 E|&ké&l
= —E|&*+2
oan)? (Z G2 3 =2 )

1<k<l<n

[I>

T+ T



C. Shouquan, L. Zhengyan / Applied Mathematics Letters 20 (2007) 316-322

Since |&k| < 1, it follows that

1 1 C
e Lyl ¢
(logn)? &= k* ~— (logn)?
Note that for/ > k
|E§k§l| = |COV(I(Mk§uk)’ I(M]SM]))'
[Cov vy <uy> Imp=ury — Ly <up) + 1COVU (ay <up)s iy <up))|

A

< 2EUm<upy — I <upy| + 1CoVU My <uy)s vy <up) |-

By Lemma 3.3, we have

3k C
E < — .
|E&&i] = - + oz D)?
Hence
6 1k 2C 1
Hh<—— —t —— S
(log n)2 15;9 kil (logn)? 15;9 kl(logl)®

c c & 1 =l
< — 1 —
= Togm?2 2" F Gogn)? ;l(mgl)a k;k

C C ", logl
< ——+ Yk
logn = (logn)? — I(log)*

C
1 2—¢
~ logn + (logn)z( ogn)
C C

< + .
~ logn = (logn)®

From (3.4) and (3.5), we establish (3.3).
The proof of (1). By the conditions of the theorem and Theorem 4.5.2(ii) in Leadbetter et al. [8], we have

P(My < un) — exp(=1).

Clearly this implies lim,— @ ZZ:] %P(Mk < uy) = exp(—71), which is, by (3.2), equivalent to

i - 11 B
o logn ]; & Mi=ui) = exp(—71) a.s.

321

(3.4)

(3.5)

The proof of (2). By Theorem 4.5.2(iii) in Leadbetter et al. [8], we have n(1— @(u,)) — exp(—x) foru, = ain +b,.

Thus from (1) we obtain

lim —— 3L = O
w5 Togn k;: i lax(—bp<x) = exp(—exp(=x)) as.

Proof of Theorem 2.2. Let u, = x/a, + b,. By the definition of a,, and b,,, we have
u? =2logn —loglogn + O(1) asn — oo.
Using Lemma 3.2(1),for 1 <k <n

1l ) u?
|[P(My < ug, M <up) — P(My < ug)P(Myn < up)| < Z;(H — JIrjlexp <—1 +T"j|> .

Since (2.2) holds, we get

|[P(My < ug, My <up) — P(My < ug)P(Myn < up)| < .
(logn)®
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Similar to Lemma 3.3, we have

k C
P(Mk,n <up)—PM, <up) <—4+-——.
n  (logn)®

According to the condition of Theorems 2.2 and 9.2.1 in Berman [10], we have
P(M, < u,) — exp(—exp(—x)).

The rest of proof is similar to that of Theorem 2.1. O
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