36 research outputs found

    Implementation of a Markov Chain Monte Carlo method to inorganic aerosol modeling of observations from the MCMA-2003 campaign ? Part I: Model description and application to the La Merced site

    No full text
    International audienceThe equilibrium inorganic aerosol model ISORROPIA was embedded in a Markov Chain Monte Carlo algorithm to develop a powerful tool to analyze aerosol data and predict gas phase concentrations where these are unavailable. The method directly incorporates measurement uncertainty, prior knowledge, and provides a formal framework to combine measurements of different quality. The method was applied to particle- and gas-phase precursor observations taken at La Merced during the Mexico City Metropolitan Area (MCMA) 2003 Field Campaign and served to discriminate between diverging gas-phase observations of ammonia and predict gas-phase concentrations of hydrochloric acid. The model reproduced observations of particle-phase ammonium, nitrate, and sulfate well. The most likely concentrations of ammonia were found to vary between 4 and 26 ppbv, while the range for nitric acid was 0.1 to 55 ppbv. During periods where the aerosol chloride observations were consistently above the detection limit, the model was able to reproduce the aerosol chloride observations well and predicted the most likely gas-phase hydrochloric acid concentration varied between 0.4 and 5 ppbv. Despite the high ammonia concentrations observed and predicted by the model, when the aerosols were assumed to be in the efflorescence branch they are predicted to be acidic (pH~3)

    Implementation of a Markov Chain Monte Carlo method to inorganic aerosol modeling of observations from the MCMA-2003 campaign ? Part II: Model application to the CENICA, Pedregal and Santa Ana sites

    No full text
    International audienceA Markov Chain Monte Carlo model for integrating the observations of inorganic species with a thermodynamic equilibrium model was presented in Part I of this series. Using observations taken at three ground sites, i.e. a residential, industrial and rural site, during the MCMA-2003 campaign in Mexico City, the model is used to analyze the inorganic particle and ammonia data and to predict gas phase concentrations of nitric and hydrochloric acid. In general, the model is able to accurately predict the observed inorganic particle concentrations at all three sites. The agreement between the predicted and observed gas phase ammonia concentration is excellent. The NOz concentration calculated from the NOy, NO and NO2 observations is of limited use in constraining the gas phase nitric acid concentration given the large uncertainties in this measure of nitric acid and additional reactive nitrogen species. Focusing on the acidic period of 9?11 April identified by Salcedo et al. (2006), the model accurately predicts the particle phase observations during this period with the exception of the nitrate predictions after 10:00 a.m. (Central Daylight Time, CDT) on 9 April, where the model underpredicts the observations by, on average, 20%. This period had a low planetary boundary layer, very high particle concentrations, and higher than expected nitrogen dioxide concentrations. For periods when the particle chloride observations are consistently above the detection limit, the model is able to both accurately predict the particle chloride mass concentrations and provide well-constrained HCl (g) concentrations. The availability of gas-phase ammonia observations helps constrain the predicted HCl (g) concentrations. When the particles are aqueous, the most likely concentrations of HCl (g) are in the sub-ppbv range. The most likely predicted concentration of HCl (g) was found to reach concentrations of order 10 ppbv if the particles are dry. Finally, the atmospheric relevance of HCl (g) is discussed in terms of its indicator properties for the possible influence of chlorine-mediated photochemistry in Mexico City

    β-delayed particle decay of 17ne into p + α + 12C through the isobaric analog state in 17F

    Get PDF
    We have observed the breakup of the isobaric analog state at 11.193 MeV in 17F into three particles via three channels: proton decay to the α-unbound 9.585 MeV state in 16O; and α decay to the proton-unbound 2.365 and 3.502/3.547 MeV states in 13N. Laboratory α-particle spectra corresponding to these three modes have been generated in Monte Carlo simulations using single-channel, single- and multilevel R-matrix formulas. A fit of these spectra to the α spectrum resulting from a triple-coincidence measurement results in excellent agreement with the experimental spectrum and allows branching ratios to be deduced for these rare decay modes

    Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study

    Get PDF
    A41 Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study In: Addiction Science & Clinical Practice 2017, 12(Suppl 1): A4

    Facts, Logical Atomism and Reducibility

    No full text

    UK Geoenergy Observatories, Glasgow Environmental Baseline Surface Water Chemistry Dataset 1

    Get PDF
    This report accompanies the United Kingdom Geoenergy Observatories Glasgow Surface Water Chemistry Dataset_1. The dataset comprises chemical analysis of 98 (84 samples and 14 duplicates) surface water samples that were collected monthly between February 2019 and March 2020 from water bodies proximal to the Glasgow Observatory. This baseline dataset provides valuable information on surface water chemistry prior to the operation of the Observatory, against which any future change can be assessed. This information is necessary to help understand the Observatory hydrological-hydrogeological regime; and to help de-risk similar shallow geothermal schemes in the future, provide public reassurance, and inform sustainable energy policy

    Historical approaches to post-combat disorders

    No full text
    Almost every major war in the last century involving western nations has seen combatants diagnosed with a form of post-combat disorder. Some took a psychological form (exhaustion, combat fatigue, combat stress reaction and post-traumatic stress disorder), while others were characterized by medically unexplained symptoms (soldier's heart, effort syndrome, shell shock, non-ulcer dyspepsia, effects of Agent Orange and Gulf War Syndrome). Although many of these disorders have common symptoms, the explanations attached to them showed considerable diversity often reflected in the labels themselves. These causal hypotheses ranged from the effects of climate, compressive forces released by shell explosions, side effects of vaccinations, changes in diet, toxic effects of organophosphates, oil-well fires or depleted-uranium munitions. Military history suggests that these disorders, which coexisted in the civilian population, reflected popular health fears and emerged in the gaps left by the advance of medical science. While the current Iraq conflict has yet to produce a syndrome typified by medically unexplained symptoms, it is unlikely that we have seen the last of post-combat disorders as past experience suggests that they have the capacity to catch both military planners and doctors by surprise
    corecore