28 research outputs found

    Signal restoration for a mass transport problem involving shear dispersion

    Get PDF
    An inverse problem associated with mass transport down a tube, when the flowing medium has a two-dimensional velocity profile, is examined. The inverse problem of estimation of a temporally varying concentration at one end of a long tube, from the measurement of the cross-sectional average concentration at the opposite end, is solved. It is shown that this inverse problem, which is associated with shear dispersion, is an ill-posed deconvolution problem. Mollification is used to produce a well-conditioned problem

    The Classification and Evolution of Bacterial Cross-Feeding

    Get PDF
    Bacterial feeding has evolved toward specific evolutionary niches and the sources of energy differ between species and strains. Although bacteria fundamentally compete for nutrients, the excreted products from one strain may be the preferred energy source or a source of essential nutrients for another strain. The large variability in feeding preferences between bacterial strains often provides for complex cross-feeding relationships between bacteria, particularly in complex environments such as the human lower gut, which impacts on the host's digestion and nutrition. Although a large amount of information is available on cross-feeding between bacterial strains, it is important to consider the evolution of cross-feeding. Adaptation to environmental stimuli is a continuous process, thus understanding the evolution of microbial cross-feeding interactions allows us to determine the resilience of microbial populations to changes to this environment, such as changes in nutrient supply, and how new interactions might emerge in the future. In this review, we provide a framework of terminology dividing bacterial cross-feeding into four forms that can be used for the classification and analysis of cross-feeding dynamics. Under the proposed framework, we discuss the evolutionary origins for the four forms of cross-feeding and factors such as spatial structure that influence their emergence and subsequent persistence. This review draws from both the theoretical and experimental evolutionary literature to provide a cross-disciplinary perspective on the evolution of different types of cross-feeding

    Anomalous ion diffusion within skeletal muscle transverse tubule networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Skeletal muscle fibres contain transverse tubular (t-tubule) networks that allow electrical signals to rapidly propagate into the fibre. These electrical signals are generated by the transport of ions across the t-tubule membranes and this can result in significant changes in ion concentrations within the t-tubules during muscle excitation. During periods of repeated high-frequency activation of skeletal muscle the t-tubule K<sup>+ </sup>concentration is believed to increase significantly and diffusive K<sup>+ </sup>transport from the t-tubules into the interstitial space provides a mechanism for alleviating muscle membrane depolarization. However, the tortuous nature of the highly branched space-filling t-tubule network impedes the diffusion of material through the network. The effective diffusion coefficient for ions in the t-tubules has been measured to be approximately five times lower than in free solution, which is significantly different from existing theoretical values of the effective diffusion coefficient that range from 2–3 times lower than in free solution. To resolve this discrepancy, in this paper we study the process of diffusion within electron microscope scanned sections of the skeletal muscle t-tubule network using mathematical modelling and computer simulation techniques. Our model includes t-tubule geometry, tautness, hydrodynamic and non-planar network factors.</p> <p>Results</p> <p>Using our model we found that the t-tubule network geometry reduced the K<sup>+ </sup>diffusion coefficient to 19–27% of its value in free solution, which is consistent with the experimentally observed value of 21% and is significantly smaller than existing theoretical values that range from 32–50%. We also found that diffusion in the t-tubules is anomalous for skeletal muscle fibres with a diameter of less than approximately 10–20 μm as a result of obstructed diffusion. We also observed that the [K<sup>+</sup>] within the interior of the t-tubule network during high-frequency activation is greater for fibres with a larger diameter. Smaller skeletal muscle fibres are therefore more resistant to membrane depolarization. Because the t-tubule network is anisotropic and inhomogeneous, we also found that the [K<sup>+</sup>] distribution generated within the network was irregular for fibres of small diameter.</p> <p>Conclusion</p> <p>Our model explains the measured effective diffusion coefficient for ions in skeletal muscle t-tubules.</p

    The satisfactory growth and development at 2 years of age of the INTERGROWTH-21st Fetal Growth Standards cohort support its appropriateness for constructing international standards.

    Get PDF
    BACKGROUND: The World Health Organization recommends that human growth should be monitored with the use of international standards. However, in obstetric practice, we continue to monitor fetal growth using numerous local charts or equations that are based on different populations for each body structure. Consistent with World Health Organization recommendations, the INTERGROWTH-21st Project has produced the first set of international standards to date pregnancies; to monitor fetal growth, estimated fetal weight, Doppler measures, and brain structures; to measure uterine growth, maternal nutrition, newborn infant size, and body composition; and to assess the postnatal growth of preterm babies. All these standards are based on the same healthy pregnancy cohort. Recognizing the importance of demonstrating that, postnatally, this cohort still adhered to the World Health Organization prescriptive approach, we followed their growth and development to the key milestone of 2 years of age. OBJECTIVE: The purpose of this study was to determine whether the babies in the INTERGROWTH-21st Project maintained optimal growth and development in childhood. STUDY DESIGN: In the Infant Follow-up Study of the INTERGROWTH-21st Project, we evaluated postnatal growth, nutrition, morbidity, and motor development up to 2 years of age in the children who contributed data to the construction of the international fetal growth, newborn infant size and body composition at birth, and preterm postnatal growth standards. Clinical care, feeding practices, anthropometric measures, and assessment of morbidity were standardized across study sites and documented at 1 and 2 years of age. Weight, length, and head circumference age- and sex-specific z-scores and percentiles and motor development milestones were estimated with the use of the World Health Organization Child Growth Standards and World Health Organization milestone distributions, respectively. For the preterm infants, corrected age was used. Variance components analysis was used to estimate the percentage variability among individuals within a study site compared with that among study sites. RESULTS: There were 3711 eligible singleton live births; 3042 children (82%) were evaluated at 2 years of age. There were no substantive differences between the included group and the lost-to-follow up group. Infant mortality rate was 3 per 1000; neonatal mortality rate was 1.6 per 1000. At the 2-year visit, the children included in the INTERGROWTH-21st Fetal Growth Standards were at the 49th percentile for length, 50th percentile for head circumference, and 58th percentile for weight of the World Health Organization Child Growth Standards. Similar results were seen for the preterm subgroup that was included in the INTERGROWTH-21st Preterm Postnatal Growth Standards. The cohort overlapped between the 3rd and 97th percentiles of the World Health Organization motor development milestones. We estimated that the variance among study sites explains only 5.5% of the total variability in the length of the children between birth and 2 years of age, although the variance among individuals within a study site explains 42.9% (ie, 8 times the amount explained by the variation among sites). An increase of 8.9 cm in adult height over mean parental height is estimated to occur in the cohort from low-middle income countries, provided that children continue to have adequate health, environmental, and nutritional conditions. CONCLUSION: The cohort enrolled in the INTERGROWTH-21st standards remained healthy with adequate growth and motor development up to 2 years of age, which supports its appropriateness for the construction of international fetal and preterm postnatal growth standards

    Recommendations for effective documentation in regional anesthesia: an expert panel Delphi consensus project

    Get PDF
    Background and objectives: Documentation is important for quality improvement, education, and research. There is currently a lack of recommendations regarding key aspects of documentation in regional anesthesia. The aim of this study was to establish recommendations for documentation in regional anesthesia. Methods: Following the formation of the executive committee and a directed literature review, a long list of potential documentation components was created. A modified Delphi process was then employed to achieve consensus amongst a group of international experts in regional anesthesia. This consisted of 2 rounds of anonymous electronic voting and a final virtual round table discussion with live polling on items not yet excluded or accepted from previous rounds. Progression or exclusion of potential components through the rounds was based on the achievement of strong consensus. Strong consensus was defined as ≥75% agreement and weak consensus as 50%-74% agreement. Results: Seventy-seven collaborators participated in both rounds 1 and 2, while 50 collaborators took part in round 3. In total, experts voted on 83 items and achieved a strong consensus on 51 items, weak consensus on 3 and rejected 29. Conclusion: By means of a modified Delphi process, we have established expert consensus on documentation in regional anesthesia

    Signal restoration for a mass transport problem involving shear dispersion

    Get PDF
    An inverse problem associated with mass transport down a tube, when the flowing medium has a two-dimensional velocity profile, is examined. The inverse problem of estimation of a temporally varying concentration at one end of a long tube, from the measurement of the cross-sectional average concentration at the opposite end, is solved. It is shown that this inverse problem, which is associated with shear dispersion, is an ill-posed deconvolution problem. Mollification is used to produce a well-conditioned problem

    A model of dispersion in perifusion systems

    No full text
    The perifusion apparatus is an experimental tool used to model information transfer in endocrine systems. The major drawback of the penfusion system derives from the dispersion, diffusion and mixing of the hormone within the apparatus which distort the original released hormone concentration profile. In this paper we develop a mathematical model of the perifusion system that accounts for a number of observable features in the measured secretory profile. We also consider associated inverse problems, the solution of which enhance perifusion data measurements and unmask the underlying secretory events. In contrast with the raw data, the deconvolved data supports the concentration dependent, rapid activation of CRH-induced ACTH secretion. The perifusion chamber can be modeled by an advection-diffusion equation, and we develop general theory analysing the validity of this approximation. We also provide a characterisation of the degree of ill-posedness of the inverse advection-diffusion equation in terms of the perifusion parameters

    The simulated steady state Kdistribution within a 10 μm × 10 μm section of the frog t-tubule network during repeated high-frequency activation of skeletal muscle

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Anomalous ion diffusion within skeletal muscle transverse tubule networks"</p><p>http://www.tbiomed.com/content/4/1/18</p><p>Theoretical Biology & Medical Modelling 2007;4():18-18.</p><p>Published online 17 May 2007</p><p>PMCID:PMC1899483.</p><p></p> The Kprofile across the fibre

    Simulated random walk of a single Kion within the human skeletal muscle t-tubule network (starting from the centre of the fibre)

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Anomalous ion diffusion within skeletal muscle transverse tubule networks"</p><p>http://www.tbiomed.com/content/4/1/18</p><p>Theoretical Biology & Medical Modelling 2007;4():18-18.</p><p>Published online 17 May 2007</p><p>PMCID:PMC1899483.</p><p></p
    corecore