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SIGNAL RESTORATION FOR A MASS TRANSPORT PROBLEM 
INVOLVING SHEAR DISPERSION 

PAUL R. SHORTEN AND DAVID J. N. WALL 

ABSTRACT. An inverse problem associated with mass transport down a tube, when the 
flowing medium has a two-dimensional velocity profile, is examined. The inverse problem 
of estimation of a temporally varying concentration at one end of a long tube, from the 
measurement of the cross-sectional average concentration at the opposite end, is solved. It 
is shown that this inverse problem, which is associated with shear dispersion, is an ill-posed 
deconvolution problem. Mollification is used to produce a well-conditioned problem. 

1. INTRODUCTION 

We consider an inverse problem associated with mass transport of a material concentration 
down a tube, when the fl.owing medium has a two-dimensional velocity profile. The fluid 
fl.ow transports a concentration of suspended material down the tube, and its concentration 
is measured downstream. From this measured concentration the temporal variation of the 
concentration at an upstream location is to be estimated. 

In viscous fl.ow problems, involving a solute concentration in a tube, the variation of the 
velocity over the cross-section of the tube is an important factor in the dispersion of the solute; 
it is called shear dispersion. The dispersion of a pulse of concentration fl.owing down the tube 
is in general due to the combined action of shear dispersion, parallel to the axis of the tube, 
and molecular diffusion, predominantly in the radial direction. When the molecular diffusion 
coefficient within the fl.ow is very small, then the fluid shear dispersion is the dominant 
dispersive effect. It is this regime that is examined in this paper. 

The first paper providing an approximate analysis of the direct problem related to these 
effects is due to Taylor [1], and a considerable literature has built up about this direct problem 
(for recent application of modern theory to this direct problem see [2]). Of interest for inverse 
problem practitioners is Taylor's paper [3], in which he estimates the molecular diffusion co­
efficient from measured concentration profiles, after dispersion. This inverse problem solution 
is one of the earliest inverse problem investigations in this area. 

The model problem, considered in this paper, has practical application in an experimen­
tal apparatus used in endocrinology experiments, where it is required to estimate temporal 
changes in concentration, upstream, from temporal concentrations changes measured at the 
end of a long tube. Information transfer in a number of endocrine systems occurs through 
rapid modulation of hormone levels in concentration pulses. Experimental methods of investi­
gating how the dynamics of signal transmission in endocrine systems relates to the mechanisms 
involved is often carried out in vitro by use of a perifusion apparatus [4, 5]. In this apparatus 
measurement of averaged hormone concentration is made downstream, along a tube (up to a 
few metres in length) from the pituitary cells which are attached to micro-beads. The fl.ow 
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rate of the carrying medium, a saline preparation, in the tube is low and the internal diameter 
of the tube is small. Longitudinal molecular diffusion effects of the hormone concentration 
suspended in the saline solution are small with respect to the mixing due to two-dimensional 
velocity distribution, for this problem. In fact for the molecular particles and temperatures 
used in the in vitro experiment described earlier longitudinal molecular diffusion is several 
orders of magnitude less dominant. A model of the perifusion apparatus as a one-dimensional 
convective-diffusive fl.ow problem has been provided by [6]. This model neglects radial disper­
sion caused by both shear dispersion and cross-diffusion effects. The analysis of the inverse 
problem associated with this simplified one-dimensional model was done in [7]. 

Inverse mass transport problems involving one-dimension fl.ow, but without diffusion, have 
also been analysed in [8], where inverse source problems associated with linear transport 
equations were solved. Various inverse problems associated with nonlinear transport equations 
have also been described in [9]. 

This paper concentrates on the inverse problem when the dispersion of the concentration 
of contaminant is due solely to the velocity profile. In § 2.1 the equations modelling the 
fl.ow of hormone concentration down the tube are given, and the mathematical operator 
mapping the temporally varying concentration to the mixed, and experimentally measured, 
temporally varying concentration is examined. In § 2.2 it is shown that the inverse of this 
operator is unbounded on the Hilbert space of square integrable functions, L2, and it is shown 
that the deconvolution problem, described by this operator, is an ill-posed problem. In § 3 
the mollification method is used to regularise the inverse problem, and the stability of the 
regularised solution is analysed. Numerical results are presented in § 4, where it is shown 
that the regularised deconvolution problem can be effectively solved, even in the presence of 
a moderate amount of measurement noise. 

2. PROBLEM DESCRIPTION 

The two-dimensional laminar fl.ow model is first analysed, and then the inverse problem is 
described. 

2.1. Basic Equations describing the Mass Transport. The velocity profile of a vis­
cous, incompressible fluid fl.owing through a rigid tube of circular cross-section with a no-slip 
boundary condition, is described by the well known Poiseuille distribution [10], (pages 57 et. 
seq.) 

(2.1) 

where r is the circular polar radial coordinate associated with a cylindrical coordinate system 
oriented so that the z-axis is aligned with the axis of the tube, and the wall of the tube is 
located at r = R. The maximum velocity of the parabolic velocity profile, Vm, depends upon 
the pressure differential applied down the tube. The fluid fl.owing in the tube is assumed to 
be Newtonian, and have a suitably low Reynolds number1 so that the fluid fl.ow is laminar. 

The mass transport, of a volume concentration of a hormone c(z, r, t) down the tube, is 
described by the transport equation (one-way wave equation), 

0( oc 
f)t + v\r) oz = O, z E [O, oo), r E [O, R], t > 0, (2.2) 

1For a saline solution typically used in perifusion experiments the Reynolds number is of order 1. 
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where the advection velocity distribution is prescribed by (2.1). This equation is a Cauchy 
initial value problem with the specification of the boundary value c(O, r, t), which is assumed 
to be independent of r, that is, it is assumed that the concentration is uniformly distributed 
across the cross-section of the tube at z = 0. Because of this assumed radial independence 
we write c(O, r, t) = co(t). This assumption is essential for the development of the method 
presented in this paper. 

When the concentration level in the tube is initially zero, c(z, r, t) lt=O = 0, then elementary 
integration of the equation (2.2) shows that 

c(z,r,t)=co(t-v[r))H(t-v[r)), zE[O,oo), rE[O,R], t>O, (2.3) 

where H denotes the Heaviside step function. If it is possible to measure this concentration, 
c( f, ri, t), at a fixed station, say z = f and 0 :::; ri < R, downstream of the injection point, then 
estimation of the injection temporal profile, co(t), is a straightforward well-posed problem; see 
[8] for discussion of such hyperbolic inverse problems. However, generally the concentration, 
at the station z = f, must be assayed over the whole tube. The simplest inverse problem will 
then require the measurement of an average concentration, Q(t), across the cross-section of 
the tube. Simple analysis of the geometry and (2.3) then shows that 

Q(t) = ~2 lR co (t - vfr) )r dr. (2.4) 

This is the case studied in§ 2 of [1]. It is readily appreciated that the operator defined in this 
equation is a smoothing operator. The exact nature of which is easily seen on application of 
the transformations= t - v{r) to the integral in (2.4), so yielding 

Q(t) = !:___ 1t- v~ co(s) 2 ds. 
Vm -oo (t - s) 

This equation can be further reduced to the more standard form 

Q(t +a) = ltoo k(t - s)co(s) ds, 

where the kernel has the functional form 
a 

k(t) = (t+a)2' with 
R, 

a=- >0. 
Vm 

(2.5) 

The parameter a represents the time that the fluid travelling with the maximum speed Vm 

takes to reach the station at z = f. 

2.2. Inverse Problem. It is now straightforward to examine the stability of the inverse 
problem of estimation of the function co, from knowledge of Q. It should be first observed 
that (2.5) is a Volterra equation of the first kind, with a regular kernel, which is a well known 
ill-posed problem [11], (pages 161 et. seq.). To understand the degree of ill-posedness it is 
convenient to perform Fourier analysis of (2.5). To this end, extend the data function Q(t), 
and the kernel function k(t), by zero for t < 0, and consider their Fourier transforms. The 
Fourier transform of t J.el is pivotal in our argument; it is 

k(~) =_a_ 100 
H(t) exp(-i~t) dt 

V21f -oo (t + a)2 ' 
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and on integrating by parts, this transform is converted to 

k(e) =_a_[-. 1 __ ;_ 100 

H(t) exp(-iet) dt]. 
V27r iea2 ie -oo (t + a)3 

By continuing this procedure, an asymptotic series in reciprocal powers of e is obtained, as 

k(e) = vk ( (i:a) - (ie~)2) + o( (iea)-3). 

It should be noted that the dominant term in the asymptotic expansion of k(e), as lei--+ oo, is 
therefore 1/(ia-/27re). Therefore from (2.5), using the convolution theorem, it follows that Q 
is not just a function in L 2(JR), but its high frequency behaviour is such that llQll2 decreases 
faster than IC1 1, as lei --+ oo, because by Parseval's theorem co E L2 

{::=:::? co E L2• It is 
readily observed that for a general noise function, n(t) E L 2(JR), assumed to be additive to 
Q(t), there is no reason to believe that the high-frequency components of n(e) will be subject 
to such rapidly decreasing behaviour, and it therefore follows that there is no guarantee that 
the product en(e) will be in L2(JR). This illustrates that the deconvolution problem associated 
with the solution of the inverse signal reconstruction is ill-posed. It also follows from the 
above asymptotic analysis that the inverse problem is equivalent to differentiation, and it is 
therefore necessary to restore continuity with respect to the data in order to successfully solve 
the problem. 

An alternative approach to directly solving (2.5) is to differentiate this equation, so leading 
to 

1 lt Q'(t +a) = ~co(t) + _
00 

k(t - s)co(s) ds, (2.6) 

where the kernel of this Volterra equation of the second kind is, k(t-s) = k'(t-s) = -2a/(t­
s + a )3, and the prime denotes differentiation with respect to the function argument. This 
equation re-enforces the idea that the inversion of the integral equation (2.5) has numerical 
conditioning equivalent to differentiation. If we denote the function space of n-th order 
continuously differentiable functions by en, and note that as the kernel k is in C[O, T], the 
integral operator in equation (2.6) is of compact Volterra type, mapping C[O, T] into itself, 
and similarly for the operator in (2.5). Given that Q, on the left-hand-side of equation (2.6), is 
assumed to be in C 1 , then there exists a unique solution co E C[O, T] of the integral equation 
(2.6) [11], (pages 30 et. seq.). Equation (2.6) is the basis of our deconvolution method to 
solve the inverse problem of estimation of co from the measurement of Q. 

Equation (2.6) defines the operator mapping the concentration signal co(t) to the measured 
average fl.ow Q(t), that is 1I' : co(t) t---t Q(t). It is the inverse of this map that defines the 
mathematical properties of the inverse problem, that is 1r- 1Q t--t CO· As the differentiation 
operator is unbounded on the function space C, and as further explained in § 3 that is the 
space we must work, it follows that this operator is unbounded. Similar reasoning shows 
that this operator is unbounded on L 2• The regularisation of the inverse operator 'lr-1 is the 
subject of the next section. 

3. RErirn • rUSATION OF THE DECONVOLUTION PROBLEM 

The inverse problem of source concentration reconstruction presented in§ 2.2 is considered 
here. This inverse problem is always ill-posed for realistic measurement data. This is because 
data that is measured, can generally only be placed in the function space L 2 , or at most 
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C, and in these function spaces differentiation operators are unbounded. As shown in § 2.2, 
the inverse operator mapping the measurement to the solution involves differentiation. It is 
therefore central to our treatment to show that numerical differentiation can be made a well­
posed problem. That this can be done is well known, and there are a number of regularisation 
techniques available. We shall choose the method of mollification in this paper, and we follow 
the treatment of Murio [12]. 

The problem is to get a regularised approximation to the derivative of f when given a 
modified function fm; where due to measurement difficulties the true function f, has been 
corrupted by a noise function n, so that 

fm(x) = f(x) + n(x), x EI. 

The functions f, and n, are defined on the interval I= [O, T], for a given value of T > 0. 
Consider the mollification, or Gaussian function 

1 -x2;82 
Po = 8fae , x E JR 

The important properties of this function are: 

1. p0 E C00 and is nearly compact, as it is almost zero outside lxl < 38. 

2. JR. p0(x) dx = 1, whereas J~~8 ps(x) dx ~ 0.997. 

To proceed, extend the data fm to the interval Is= [-38, 38 + T] by 

fm(x) = fm(O)exp[x2/[x2 -(38)2
]], -38::; x < 0, 

fm(x) = f m(T) exp[ (x -T)2 /[(x - T)2 
- (38) 2]), T < x ::; T + 38, 

and then define the mollifier of f by 

Jsf(x) = (Po* f) (x) = 1: ps(x - s)f(s) ds, 

1
x+38 

~ Ps(x - s)f(s) ds, 
x-38 

(3.1) 

where 8 > 0 is the radius of mollification. We define the norm llf(t)lloo = SUPtEI lf(t)I, then 
the following results are central to our stability proof. 

Lemma: Murio 's Consistency . If II!" lloo ::; M2 then 

II ( Jof) 1 
- f'lloo ::; 38M2. 

This consistency result shows that as 8 ---> 0, then ( J0f) 
1 

---> f'. 

Lemma: Murio 's Stability. With fm E C(fo) 

ll(Jsf)' - (Jsfm)'lloo::; 8~11fm -flloo· 

We see the mollification method provides the differentiation operator with a Lipschitz 
continuity result, when the data fm EC, provided 8 > 0 is fixed. Furthermore as llfm - fll---> 
0, 8 can be reduced, a consistency error is then decreased, provided f E C 2• 

We now define the regularised inverse source problem. First mollify the measurement data 
that is specified in § 2.2, by forming J0Q(t), and then solve the inverse source problem with 
this regularised measurement data, through (2.6). 
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(a) The simulated measured time signal, Q, 
with no noise present __ , and with 2.5% noise 
present, Qm = Q + n, as indicated by++. 

0.1.---~---.----.---....-----~ 
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0.1 

(c) The simulated measured time signal, Q, 
with no noise present __ , and with 5% noise 
present, Qm = Q + n, as indicated by + +. 

0.1.-------------.---~--~ 

(b) The simulated measured time signal, Q, 
with no noise present - - - , and the mollified 
time signal, J( Qm) _with 2.5% mollification 
when 2.5% noise is present on Qm. 

0.1.-------------.---~--~ 

(d) The simulated measured time signal, Q, 
with no noise present - - - , and the mollified 
time signal, J(Qm) _with 5% mollification 
when 5% noise is present on Qm. 

FIGURE 1. The measured temporal signal Q(t), the noisy signal Qm(t), and 
the mollified si;~~ 1 T(Qm)(t). 

Theorem 3.1. The signal reconstruction problem, as stated in§ 2.2, with mollified measure­
ment data J6Q has a well posed solution, provided that Qm E C[O, T]. 
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Proof. We denote the measured function value that has not been corrupted by noise, by Q, 
and the modified value due to the noise by Qm; the actual measurement. 

We first must bound the appropriate Volterra operators, before using the stability results 
from the beginning of this section for the differentiation operator. Consider :firstly the equation 

(,A.Il - JK)v = J, (3.2) 

where lK is a linear compact Volterra integral operator in the function space of continuous 
functions defined on an appropriate interval, and secondly the perturbed mapping equation 

( .\Il - JK)w = f + .6.f. 

In this equation f and .6.f are some appropriate continuous functions, and it is assumed that 
the operator lK has a continuous kernel k, as given in (2.6). Then standard theory (see for 
example [11], (pages 45 et. seq.)), shows that if there exists two constants Kand .6., such that 
lkl < K, 1.6.fl < .6., and if.\ is a constant, then 

.6. 
lv(t) - w(t)I $ -:\exp( Kt/.\), 

where for (2.6), K = -2/a2, and.\= 1/ a. It follows, with 11'-1 definedas11'-1 f = (.\Il-JK)- 1 f, 
together with mollification of the measurement function, Qm, and by Murio's stability lemma, 
we have the Lipschitz continuity result 

1111'- 1
( JsQ)' -11'-l ( JsQm)

1
lloo $ 

2 ex~~~/.\) llQm - Qlloo· 

0 

Consistency of the mollified problem solution to the exact co can be shown from Murio's 
consistency lemma, provided that Q(t) E C2[0, T]. Examination of (2.5) shows, with the 
assumption that co E C 1 [0, T] and because of the smooth kernel, k, that Q E C2 [0, T]. 

4. NUMERICAL METHOD AND RESULTS 

In the results presented in this section the various parameters are taken from the perifusion 
experimental setup associated with ACTH 2 measurements [13, 14], and they are: Vm = 
6 x 10-3 ms-1 , f = 2 m, R = 0.5 x 10-3 m, so that a= 1/3 x 103 s. The measured time 
signal Q(t) for 0 $ t $ T, with T = 3000 s, is assumed to be the known function in the 
inverse problem. An important property of the problem is the finite speed of mass transport, 
so that Q'(t) = 0, when t <a. It is therefore assumed that Q(t) = 0 fort< a, implying that 
co(t) = O fort< 0. 

We now describe the numerical algorithm used to solve the inverse problem. Define the 
natural numbers i, j, M, N E N, and then a mesh {ti}f:,0 , with uniform mesh interval h = 
T /N, and to = 0, ti = ti-1 + h, 1 $ i $ N, is established on the time axis. The signal 
function co(t) is now approximated by a B-spline of degree n, denoted by Sn, such that 

M 

co(t) =I: O:ibi(t), (4.1) 
i=O 

2 Adrenocorticotrophic hormone (ACTH) is the major hormone released from the corticotrophin cells in the 
pituitary gland in response to stimulation, and is often the hormone concentration measured in perifusion 
experiments. 
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(a) The derivative of the measured time signal, 
Q'(t), with no noise present---, the mollified 
derivative (J(Qm))'(t) with 2.5% mollification 
_,and the direct derivative Q;,.(t), indicated 
by + +. The noise level in Qm is 2.5%. 

-3 

3
x10 

I 
I> .... 

2 +I 
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I '+ I t + 

.. 
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• • 
+ + + • 

-1 • + 
+ 

-2 

+ 
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(b) The derivative of the measured time sig­
nal, Q' (t), with no noise present - - -, the 
mollified derivative (J(Qm))'(t) with 5% mol­
lification_, and the direct derivative Q;,.(t), 
indicated by + +. The noise level in Qm is 5%. 

FIGURE 2. Estimation of the derivative Q'(t) for noise levels of 2.5% and 5%. 

where M + 1 is the cardinality of the B-spline basis, {bi(t)}{'!0 E Sn[O, T]. Collocation of the 
equation (2.6) then provides the finite dimensional equation 

M lt· 0:-j J ~ 

- + L O:i k(tj - s)bi(s) ds = Q'(tj +a), 
a i=O -oo 

j E [O,N] (4.2) 

The properties of the B-splines and their support implies that the matrix defined by this 
equation will be lower triangular. For a concrete implementation of the algorithm, the integral 
is approximated by the trapezoidal rule, and n is chosen to be one; so that the B-spline basis 
functions are the piecewise linear, or hat, functions. 

Now denote Q'(ti +a), k(ti) and (J(Q))'(ti) by Qi, ki, and (J(Q))i respectively. Note for 
notational simplicity the subscript 8 has been suppressed from the mollification operator J. 
Then (4.2) can be solved for the unknown coefficients {ai}~0 , so yielding 

ao = aQ6, 

1:::; j:::; N, (4.3) 

where the prime on the summation sign is to signify that the last value in the summation is 
to be halved. 
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(a) The reconstructed time signal, co(t). The 
mollified reconstructed co _, with 2.5% mol­
lification, the directly reconstructed co ++, 
and the exact co - - -. Both the former two 
reconstructions are from Qm with 2.5% noise 
present. 

(b) The reconstructed time signal, co(t). The 
mollified reconstructed co _, with 5% molli­
fication, the directly reconstructed co++, and 
the exact co ---. Both the former two recon­
structions are from Qm with 5% noise present. 

FIGURE 3. Reconstruction of the temporal boundary concentration co. 

All that remains to ensure that the algorithm is well-posed, is to evaluate the coefficients 
{ QHf:o as the mollified derivative values, {( J0Q)Hf:0 , as described in § 3, but with the 
standard numerical central differences formula used to estimate the numerical derivative. 

4.1. Numerical Results. The measurement data utilised in this section was simulated 
through the use of equation (2.5). The calculated data Q was corrupted with white noise 
having a normal distribution and zero mean, so that the averaged concentration, Qm = Q + n 
was used in the measured simulation. The quoted value of the noise level, in our results, is 
a relative measure of the standard deviation of the noise to llQll2, where II · 112 denotes the 
P.2 sequence space norm. In a practical experiment it is not possible to measure a negative 
concentration, so when Qm was found to be negative in the simulation, it was replaced by a 
zero value. 

In Figure 1 the computer simulation of averaged concentrations at z = f, is illustrated 
for various noise levels. The boundary value, of the concentration at z = 0, was chosen as 
representative of the initial hormone input into the tube, namely the pulse function 

co(t) = H(t) - H(t - L), O 5:. t 5:. T, (4.4) 

where L = 600 s, an is the boundary value used throughout this paper. This figure 
shows how the mollification of the noisy signal provides a acceptable smoothing on the noisy 
data, and provides a good approximation to the main features of the clean signal. The time 
signal Q(t) can be found analytically from (2.5), when the concentration at z = 0 is given 
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1.2.-----,..---.,-----,----,----,.---, 
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(a) The reconstructed time signal, co(t). The 
mollified reconstructed co_, with 5% molli­
fication but without the positivity adjustment, 
the directly reconstructed Co ++, and the ex­
act ca - - -. Both the former two reconstruc­
tions are from Qm with 5% noise present. 

1.2 

+ ++ 
0.8 + + + 

0.6 +. 

0.4 

+ 
0.2 

00 500 1000 1500 2000 2500 3000 

(b) The reconstructed time signal, ca ( t). The 
mollified reconstructed co_, with 2.5% molli­
fication, the directly reconstructed co ++, and 
the exact co - - -. Both the former two recon­
structions are from Qm with 5% noise present. 

FIGURE 4. Reconstruction of the temporal boundary concentration CQ. 

by ( 4.4). In all simulated results presented in this paper T = 3000 s and N = 120, so that 
h = 25. 

The amount of mollification utilised in our numerical reconstructions is stated as a rela­
tive percentage of 8/T, with T denoting the maximum time for which the data is collected. 
Another way of quoting this is to express the 8 size in seconds. The value of the mollification 
parameter 8, was generally chosen to be approximately the same relative percentage of T as 
the relative percentage noise level. More sophisticated methods of optimising 8 can be found 
in [12]. Although our experience indicates the choice of 8 is not too critical provided 8 > h. 
Relative percentage values of mollification of 2.5% and 5%, correspond to 8 values of 75 and 
150, respectively, in this paper. 

Figure 2 shows the directly estimated, the mollified, and accurate derivatives of the function 
Q'(t); these are used in equation (2.6) of our algorithm. It is seen from these figures, that 
for low noise levels direct differentiation of the data Q~(t) provides an acceptable estimate 
of the true derivative. This is not true for the higher noise level illustrated, and in this case 
the mollification technique described in § 3 is essential. The mollified derivative is utilised 
in the deconvolution algorithm (4.3). It is to be observed, by comparison of this figure with 
Figure 1, the noise am] ion introduced by the differentiation operator. 

In Figure 3 the concentration signals co(t) which have been reconstructed from two Qm 
signals, with respective noise levels of 2.53 and 5%, are illustrated. It is again observed, 
for low noise levels, the direct reconstruction (without mollification) provides an acceptable 
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estimate. However, for the higher noise level this is no longer true, and the mollification 
algorithm is essential. In these results the best values for 6 have been taken, as previously 
explained; smaller values for 6 produce more oscillations as can be seen from comparison of 
Figure 3(b) and Figure 4(b), which have 6 values of 150 and 75, respectively. The larger 
values of 6 resulting in more smoothing. 

It is possible to extend the results in § 3, and find optimum values for 6, given the noise 
level llQm - Qll00 :::; E:. However, for the problem this paper addresses, the measurement 
actually made is ftt

1

2 Q(t) dt for a sequence of values of ti and tz, but with uniform spacing, 
that is tz - ti = D.t. It follows that there is little point in choosing 6 < D.t. The problem 
where Q(t) is averaged over a sequence of uniformly spaced time periods, say D.t, will be 
described in a later paper. 

In Figures 3 and Figure 4(b), for the mollified reconstruction presented, it is seen that 
the reconstructed co is positive; this is an obvious physical requirement, and this require­
ment has been added to the algorithm. Observe Figure 4(a) which shows the same result as 
Figure 3(b), but without this constraint; the concentration becomes negative. It is difficult 
to add such constraints as positivity to the mollification algorithm without resulting in a 
nonlinear problem. 

In order to include positivity in our algorithm therefore, we employ a simple artifice. From 
the solution of (4.3) we find lb= mini ai, and use as a solution to the deconvolution problem, 
the modified ai values 

i E {O, N}. 

These { ai}f:0 are used in the mollified results shown in Figure 3 and Figure 4(b). In Figure 3 
and Figure 4(b) no negative concentrations are shown. However, for the rm-mollified noisy 
data, negative values are obtained as shown in Figure 4(a), but they have been suppressed in 
the other figures. 

5. CONCLUSIONS 

It has been shown that mollification leads to acceptable solutions in the reconstruction of a 
concentration deconvolution problem. The method proposed is sequential, and computation­
ally efficient, involving only the solution of a triangular system of algebraic equations. The 
deconvolution procedure advocated should lead to improved interpretation of experimental 
data in perifusion experiments. 

The Newtonian fluid model used in this paper is appropriate for the in vitro experiment 
described in this paper. However, for in vivo experiments [15] blood is the transporting 
medium, and for the tube diameters utilised in these experiments blood does not behave in a 
Newtonian manner. More appropriate fluid velocity profiles for this case will be discussed in 
another paper. 

As discussed in § 1, the Taylor theory would enable an apparent diffusion coefficient to 
be used to model both the shear and cross-diffusion dispersion effects as a one-dimensional 
advection-diffusion pre· · For the appropriate inverse problem, invariant imbedding tech­
niques similar to those used in [16] could then be used to solve this side-ways heat problem. 
However, it should be pointed out that the experimental setup, for some of the perifusion 
apparatus used, seems to be on the borderline of applicability of pure shear dispersion theory, 
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as presented in this paper, and the Taylor theory. These ideas will be examined in a later 
paper. 
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