3,432 research outputs found

    MANAGEMENT OF LABOUR WITH CEREBRAL PATHOLOGY

    Get PDF
    No abstrac

    Meissner phases in spin-triplet ferromagnetic superconductors

    Full text link
    We present new results for the properties of phases and phase transitions in spin-triplet ferromagnetic superconductors. The superconductivity of the mixed phase of coexistence of ferromagnetism and unconventional superconductivity is triggered by the presence of spontaneous magnetization. The mixed phase is stable but the other superconducting phases that usually exist in unconventional superconductors are either unstable or for particular values of the parameters of the theory some of them are metastable at relatively low temperatures in a quite narrow domain of the phase diagram. Phase transitions from the normal phase to the phase of coexistence is of first order while the phase transition from the ferromagnetic phase to the coexistence phase can be either of first or second order depending on the concrete substance. Cooper pair and crystal anisotropies determine a more precise outline of the phase diagram shape and reduce the degeneration of ground states of the system but they do not change drastically phase stability domains and thermodynamic properties of the respective phases. The results are discussed in view of application to metallic ferromagnets as UGe2, ZrZn2, URhGe.Comment: 21 pages, 7 figures; Phys. Rev. B (2005) in pres

    CHLAMYDIA TRACHOMATIS IN PREGNANT WOMEN AND THEIR NEWBORN BABIES

    Get PDF
    No abstrac

    New features of the phase transition to superconducting state in thin films

    Full text link
    The Halperin-Lubensky-Ma (HLM) effect of a fluctuation-induced change of the order of phase transition in thin films of type I superconductors with relatively small Ginzburg-Landau number Îş\kappa is considered. Numerical data for the free energy, the order parameter jump, the latent heat, and the specific heat of W, Al and In are presented to reveal the influence of film thickness and material parameters on the properties of the phase transition. We demonstrate for the first time that in contrast to the usual notion the HLM effect occurs in the most distinct way in superconducting films with high critical magnetic field Hc0H_{c0} rather than in materials with small Îş\kappa. The possibility for an experimental observation of the fluctuation change of the order of superconducting phase transition in superconducting films is discussed.Comment: 11 pages, MikTexTeX, 3 fig, 2 Tables, corrected some typos, Submitted J.Phys:Cond Ma

    High sensitivity nanoparticle detection using optical microcavities

    Get PDF
    We demonstrate a highly sensitive nanoparticle and virus detection method by using a thermal-stabilized reference interferometer in conjunction with an ultrahigh-Q microcavity. Sensitivity is sufficient to resolve shifts caused by binding of individual nanobeads in solution down to a record radius of 12.5 nm, a size approaching that of single protein molecules. A histogram of wavelength shift versus nanoparticle radius shows that particle size can be inferred from shift maxima. Additionally, the signal-to-noise ratio for detection of Influenza A virus is enhanced to 38:1 from the previously reported 3:1. The method does not use feedback stabilization of the probe laser. It is also observed that the conjunction of particle-induced backscatter and optical-path-induced shifts can be used to enhance detection signal-to-noise

    Performance of the Gas Gain Monitoring system of the CMS RPC muon detector and effective working point fine tuning

    Full text link
    The Gas Gain Monitoring (GGM) system of the Resistive Plate Chamber (RPC) muon detector in the Compact Muon Solenoid (CMS) experiment provides fast and accurate determination of the stability in the working point conditions due to gas mixture changes in the closed loop recirculation system. In 2011 the GGM began to operate using a feedback algorithm to control the applied voltage, in order to keep the GGM response insensitive to environmental temperature and atmospheric pressure variations. Recent results are presented on the feedback method used and on alternative algorithms

    CMS endcap RPC gas gap production for upgrade

    Get PDF
    The CMS experiment will install a RE4 layer of 144 new Resistive Plate Chambers (RPCs) on the existing york YE3 at both endcap regions to trigger high momentum muons from the proton-proton interaction. In this paper, we present the detailed procedures used in the production of new RPC gas gaps adopted in the CMS upgrade. Quality assurance is enforced as ways to maintain the same quality of RPC gas gaps as the existing 432 endcap RPC chambers that have been operational since the beginning of the LHC operation

    Functional renormalization for quantum phase transitions with non-relativistic bosons

    Full text link
    Functional renormalization yields a simple unified description of bosons at zero temperature, in arbitrary space dimension dd and for MM complex fields. We concentrate on nonrelativistic bosons and an action with a linear time derivative. The ordered phase can be associated with a nonzero density of (quasi) particles nn. The behavior of observables and correlation functions in the ordered phase depends crucially on the momentum kphk_{ph}, which is characteristic for a given experiment. For the dilute regime kph≳n1/dk_{ph}\gtrsim n^{1/d} the quantum phase transition is simple, with the same ``mean field'' critical exponents for all dd and MM. On the other hand, the dense regime kph≪n1/dk_{ph}\ll n^{1/d} reveals a rather rich spectrum of features, depending on dd and MM. In this regime one observes for d≤3d\leq 3 a crossover to a relativistic action with second time derivatives. This admits order for d>1d>1, whereas d=1d=1 shows a behavior similar to the low temperature phase of the classical two-dimensional O(2M)O(2M)-models.Comment: 31 pages, new reference

    Optical detection of single non-absorbing molecules using the surface plasmon of a gold nanorod

    Full text link
    Current optical detection schemes for single molecules require light absorption, either to produce fluorescence or direct absorption signals. This severely limits the range of molecules that can be detected, because most molecules are purely refractive. Metal nanoparticles or dielectric resonators detect non-absorbing molecules by a resonance shift in response to a local perturbation of the refractive index, but neither has reached single-protein sensitivity. The most sensitive plasmon sensors to date detect single molecules only when the plasmon shift is amplified by a highly polarizable label or by a localized precipitation reaction on the particle's surface. Without amplification, the sensitivity only allows for the statistical detection of single molecules. Here we demonstrate plasmonic detection of single molecules in realtime, without the need for labeling or amplification. We monitor the plasmon resonance of a single gold nanorod with a sensitive photothermal assay and achieve a ~ 700-fold increase in sensitivity compared to state-of-the-art plasmon sensors. We find that the sensitivity of the sensor is intrinsically limited due to spectral diffusion of the SPR. We believe this is the first optical technique that detects single molecules purely by their refractive index, without any need for photon absorption by the molecule. The small size, bio-compatibility and straightforward surface chemistry of gold nanorods may open the way to the selective and local detection of purely refractive proteins in live cells

    The Upgrade of the CMS RPC System during the First LHC Long Shutdown

    Get PDF
    The CMS muon system includes in both the barrel and endcap region Resistive Plate Chambers (RPC). They mainly serve as trigger detectors and also improve the reconstruction of muon parameters. Over the years, the instantaneous luminosity of the Large Hadron Collider gradually increases. During the LHC Phase 1 (~first 10 years of operation) an ultimate luminosity is expected above its design value of 10^34/cm^2/s at 14 TeV. To prepare the machine and also the experiments for this, two long shutdown periods are scheduled for 2013-2014 and 2018-2019. The CMS Collaboration is planning several detector upgrades during these long shutdowns. In particular, the muon detection system should be able to maintain a low-pT threshold for an efficient Level-1 Muon Trigger at high particle rates. One of the measures to ensure this, is to extend the present RPC system with the addition of a 4th layer in both endcap regions. During the first long shutdown, these two new stations will be equipped in the region |eta|<1.6 with 144 High Pressure Laminate (HPL) double-gap RPCs operating in avalanche mode, with a similar design as the existing CMS endcap chambers. Here, we present the upgrade plans for the CMS RPC system for the fist long shutdown, including trigger simulation studies for the extended system, and details on the new HPL production, the chamber assembly and the quality control procedures.Comment: 9 pages, 6 figures, presented by M.Tytgat at the XI workshop on Resistive Plate Chambers and Related Detectors (RPC2012), INFN - Laboratori Nazionali di Frascati, February 5-10, 201
    • …
    corecore