7 research outputs found

    The SISAL database: a global resource to document oxygen and carbon isotope records from speleothems

    Get PDF
    Stable isotope records from speleothems provide information on past climate changes, most particularly information that can be used to reconstruct past changes in precipitation and atmospheric circulation. These records are increasingly being used to provide “out-of-sample” evaluations of isotope-enabled climate models. SISAL (Speleothem Isotope Synthesis and Analysis) is an international working group of the Past Global Changes (PAGES) project. The working group aims to provide a comprehensive compilation of speleothem isotope records for climate reconstruction and model evaluation. The SISAL database contains data for individual speleothems, grouped by cave system. Stable isotopes of oxygen and carbon (δ 18O, δ 13C) measurements are referenced by distance from the top or bottom of the speleothem. Additional tables provide information on dating, including information on the dates used to construct the original age model and sufficient information to assess the quality of each data set and to erect a standardized chronology across different speleothems. The metadata table provides location information, information on the full range of measurements carried out on each speleothem and information on the cave system that is relevant to the interpretation of the records, as well as citations for both publications and archived data. The compiled data are available at https://doi.org/10.17864/1947.147

    20 years of speleothem paleoluminescence records of environmental changes: an overview

    Get PDF
    This paper discusses advance of the research on Speleothem Paleoluminescence Records of Environmental Changes after it have been first introduced by the author 20 years ago. It is demonstrated that most of the progress in this field was made in result of the operation of the International Program “Luminescence of Cave Minerals” of the commission on Physical Chemistry and Hydrogeology of Karst of UIS of UNESCO. Potential, resolution and limitations of high resolution luminescence speleothem proxy records of Paleotemperature, Solar Insolation, Solar Luminosity, Glaciations, Sea Level advances, Past Precipitation, Plants Populations, Paleosoils, Past Karst Denudation, Chemical Pollution, Geomagnetic field and Cosmic Rays Flux variations, Cosmogenic Isotopes production and Supernova Eruptions in the Past, Advances of Hydrothermal Waters, and Tectonic Uplift are discussed. It is demonstrated that speleothems allow extremely high resolution (higher than in any other paleoclimatic terrestrial archives) and long duration of records. Some speleothems can be used as natural climatic stations for obtaining of quantitative proxy records of Quaternary climates with annual resolution

    Prehistoric Astronomical Observatories and Paleoclimatic Records in Bulgaria Estimate Astroclimate during 4000–4500 BCE: A Critical Assessment

    No full text
    Prehistoric astronomical observatories include a specific type of rock-cut monuments from the Mountainous Thrace in Bulgaria, with a specific shape and orientation in space, which are part of the characteristic representatives of the archeoastronomical sites on the Balkan Peninsula from the period of 4000–4500 BCE. Earlier societies focused on the triad “astronomical instrument”—celestial objects—trained observers. When choosing sites for the construction of oriented stone complexes for astronomical observations, prehistoric people were interested in the number of clear days and nights within the tropical year, which is connected with the paleoclimate of the region and to the astroclimate, which determines the possibility of observing heavenly bodies. Here we examine 13 prehistoric astronomical observatories using the methods of archaeoastronomy in order to determine the period of their operation. Since the existence of a large number of such objects is indirect evidence of a good astroclimate, we make an assessment of the paleoclimate in the relevant era in the Bulgarian lands in order to find out if it was suitable for astronomical observations. The estimations are made according to the geological data and solar insolation luminescence proxy records of the evolution of cave speleothems from Duhlata cave in the village of Bosnek, Pernik municipality, which is still the only available experimental record of past solar insolation in Europe covering the last 20,000 years. The number of clear days and nights are estimated, and a critical assessment of the possibility of successful observations of the Sun during equinoxes and solstices is made using the methods of “horizon” astronomy and meridional culminations. It is also shown that the climate at the end of the Ice Age was cooler than today. About 11,700 years ago (11,700 radiocarbon years before 1950 CE or 11,700 BP), the climate began to warm, and forest vegetation developed on the territory liberated from the glaciers. During the Upper Atlantic (6–8 thousand years BCE), the average annual temperature on the Balkan Peninsula and in particular in Bulgaria was about 2–2.5 °C higher than it is today. This climate allows some very good astroclimatic conditions for observations of the Sun near the horizon and increases the accuracy of the observational data in determining the time of occurrence in its extreme positions on the horizon. We show that changes in climate (and astroclimate accordingly) influence the type of prehistoric astronomical observatories

    Verification of the causes of glaciations and sea level changes using the records of calcite speleothems.

    No full text
    The luminescence of calcite speleothems displays an exponential dependence on soil temperature unless there is a dense cover of forest over the cave to dampen it. This relationship is determined primarily by the strength of solar visible and infrared radiation. It is suggested that, as a consequence, the microzonal variations of luminescence often found in speleothems can be used as a proxy index of Solar Insolation. The luminescence solar insolation proxy record of a speleothem from Jewel Cave, South Dakota, USA, was found to display millenial and centennial cycles in the record. It exhibits a rapid increase in solar insolation at 139 ± 5.5 kyrs. This increase precedes that suggested by the Orbital theory by about 10,000 years and is due to superimposition of the most powerful cycle in solar luminosity of 11.5 kyrs, upon the curve of orbital variations. The record from a speleothem in Duhlata Cave, Bulgaria matches that of South Dakota within the limits of dating error, indicating that both of these records (which are 10,000 km apart) measure global solar insolation controls rather than local paleotemperature variations

    Abstracts Of The Proceedings And The Posters From The Third Scientific Session Of The Medical College Of Varna

    No full text
    October 2-3, 201
    corecore