174 research outputs found

    Skeletal muscle-derived interstitial progenitor cells (PICs) display stem cell properties, being clonogenic, self-renewing and multi-potent in vitro and in vivo.

    Get PDF
    European Research Council, European Community 7th Framework project ENDOSTEM (contract number FP7-Health-2009-ENDOSTEM 241440 (Activation of vasculature-associated stem cells and muscle stem cells for the repair and maintenance of muscle tissue)

    Adult cardiac stem cells are multipotent and robustly myogenic: c-kit expression is necessary but not sufficient for their identification

    Get PDF
    Multipotent adult resident cardiac stem cells (CSCs) were first identified by the expression of c-kit, the stem cell factor receptor. However, in the adult myocardium c-kit alone cannot distinguish CSCs from other c-kit-expressing (c-kitpos) cells. The adult heart indeed contains a heterogeneous mixture of c-kitpos cells, mainly composed of mast and endothelial/progenitor cells. This heterogeneity of cardiac c-kitpos cells has generated confusion and controversy about the existence and role of CSCs in the adult heart. Here, to unravel CSC identity within the heterogeneous c-kit-expressing cardiac cell population, c-kitpos cardiac cells were separated through CD45-positive or -negative sorting followed by c-kitpos sorting. The blood/endothelial lineage-committed (Lineagepos) CD45posc-kitpos cardiac cells were compared to CD45neg(Lineageneg/Linneg) c-kitpos cardiac cells for stemness and myogenic properties in vitro and in vivo. The majority (~90%) of the resident c-kitpos cardiac cells are blood/endothelial lineage-committed CD45posCD31posc-kitpos cells. In contrast, the LinnegCD45negc-kitpos cardiac cell cohort, which represents 10% of the total c-kitpos cells, contain all the cardiac cells with the properties of adult multipotent CSCs. These characteristics are absent from the c-kitneg and the blood/endothelial lineage-committed c-kitpos cardiac cells. Single Linnegc-kitpos cell-derived clones, which represent only 1ā€“2% of total c-kitpos myocardial cells, when stimulated with TGF-Ī²/Wnt molecules, acquire full transcriptome and protein expression, sarcomere organisation, spontaneous contraction and electrophysiological properties of differentiated cardiomyocytes (CMs). Genetically tagged cloned progeny of one Linnegc-kitpos cell when injected into the infarcted myocardium, results in significant regeneration of new CMs, arterioles and capillaries, derived from the injected cells. The CSCā€™s myogenic regenerative capacity is dependent on commitment to the CM lineage through activation of the SMAD2 pathway. Such regeneration was not apparent when blood/endothelial lineage-committed c-kitpos cardiac cells were injected. Thus, among the cardiac c-kitpos cell cohort only a very small fraction has the phenotype and the differentiation/regenerative potential characteristics of true multipotent CSCs

    Transplantation of Allogeneic PW1pos/Pax7neg Interstitial Cells (PICs) Enhance Endogenous Repair of Injured Porcine Skeletal Muscle

    Get PDF
    Skeletal muscle-derived PW1pos/Pax7neg interstitial cells (PICs) express and secrete a multitude of proregenerative growth factors and cytokines. Utilizing a porcine preclinical skeletal muscle injury model, delivery of allogeneic porcine PICs (pPICs) significantly improved and accelerated myofiber regeneration and neocapillarization, compared with saline vehicle control-treated muscles. Allogeneic pPICs did not contribute to new myofibers or capillaries and were eliminated by the host immune system. In conclusion, allogeneic pPIC transplantation stimulated the endogenous stem cell pool to bring about enhanced autologous skeletal muscle repair and regeneration. This allogeneic cell approach is considered a cost-effective, easy to apply, and readily available regenerative therapeutic strategy

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Confocal endomicroscopy of neuromuscular junctions stained with physiologically inert protein fragments of tetanus toxin

    Get PDF
    Live imaging of neuromuscular junctions (NMJs) in situ has been constrained by the suitability of ligands for inert vital staining of motor nerve terminals. Here, we constructed several truncated derivatives of the tetanus toxin C-fragment (TetC) fused with Emerald Fluorescent Protein (emGFP). Four constructs, namely full length emGFP-TetC (emGFP-865:TetC) or truncations comprising amino acids 1066ā€“1315 (emGFP-1066:TetC), 1093ā€“1315 (emGFP-1093:TetC) and 1109ā€“1315 (emGFP-1109:TetC), produced selective, high-contrast staining of motor nerve terminals in rodent or human muscle explants. Isometric tension and intracellular recordings of endplate potentials from mouse muscles indicated that neither full-length nor truncated emGFP-TetC constructs significantly impaired NMJ function or transmission. Motor nerve terminals stained with emGFP-TetC constructs were readily visualised in situ or in isolated preparations using fibre-optic confocal endomicroscopy (CEM). emGFP-TetC derivatives and CEM also visualised regenerated NMJs. Dual-waveband CEM imaging of preparations co-stained with fluorescent emGFP-TetC constructs and Alexa647-Ī±-bungarotoxin resolved innervated from denervated NMJs in axotomized WldS mouse muscle and degenerating NMJs in transgenic SOD1G93A mouse muscle. Our findings highlight the region of the TetC fragment required for selective binding and visualisation of motor nerve terminals and show that fluorescent derivatives of TetC are suitable for in situ morphological and physiological characterisation of healthy, injured and diseased NMJs

    Diabetic foot infections: a team-oriented review of medical and surgical management

    Get PDF
    As the domestic and international incidence of diabetes and metabolic syndrome continues to rise, health care providers need to continue improving management of the long-term complications of the disease. Emergency department visits and hospital admissions for diabetic foot infections are increasingly commonplace, and a like-minded multidisciplinary team approach is needed to optimize patient care. Early recognition of severe infections, medical stabilization, appropriate antibiotic selection, early surgical intervention, and strategic plans for delayed reconstruction are crucial components of managing diabetic foot infections. The authors review initial medical and surgical management and staged surgical reconstruction of diabetic foot infections in the inpatient setting

    RETurn to work After stroKE (RETAKE) Trial: protocol for a mixed-methods process evaluation using normalisation process theory

    Get PDF
    Objectives: This mixed-method process evaluation underpinned by normalisation process theory aims to measure fidelity to the intervention, understand the social and structural context in which the intervention is delivered and identify barriers and facilitators to intervention implementation. Setting: RETurn to work After stroKE (RETAKE) is a multicentre individual patient randomised controlled trial to determine whether Early Stroke Specialist Vocational Rehabilitation (ESSVR) plus usual care is a clinically and cost-effective therapy to facilitate return to work after stroke, compared with usual care alone. This protocol paper describes the embedded process evaluation. Participants and outcome measures: Intervention training for therapists will be observed and use of remote mentor support reviewed through documentary analysis. Fidelity will be assessed through participant questionnaires and analysis of therapy records, examining frequency, duration and content of ESSVR sessions. To understand the influence of social and structural contexts, the process evaluation will explore therapists' attitudes towards evidence-based practice, competency to deliver the intervention and evaluate potential sources of contamination. Longitudinal case studies incorporating non-participant observations will be conducted with a proportion of intervention and usual care participants. Semistructured interviews with stroke survivors, carers, occupational therapists, mentors, service managers and employers will explore their experiences as RETAKE participants. Analysis of qualitative data will draw on thematic and framework approaches. Quantitative data analysis will include regression models and descriptive statistics. Qualitative and quantitative data will be independently analysed by process evaluation and Clinical Trials Research Unit teams, respectively. Linked data, for example, fidelity and describing usual care will be synthesised by comparing and integrating quantitative descriptive data with the qualitative findings. Ethics and dissemination: Approval obtained through the East Midlands - Nottingham 2 Research Ethics Committee (Ref: 18/EM/0019) and the National Health ServiceResearch Authority. Dissemination via journal publications, stroke conferences, social media and meetings with national Stroke clinical leads. Trial registration number: ISRCTN12464275

    Potent New Small-Molecule Inhibitor of Botulinum Neurotoxin Serotype A Endopeptidase Developed by Synthesis-Based Computer-Aided Molecular Design

    Get PDF
    Botulinum neurotoxin serotype A (BoNTA) causes a life-threatening neuroparalytic disease known as botulism. Current treatment for post exposure of BoNTA uses antibodies that are effective in neutralizing the extracellular toxin to prevent further intoxication but generally cannot rescue already intoxicated neurons. Effective small-molecule inhibitors of BoNTA endopeptidase (BoNTAe) are desirable because such inhibitors potentially can neutralize the intracellular BoNTA and offer complementary treatment for botulism. Previously we reported a serotype-selective, small-molecule BoNTAe inhibitor with a Kiapp value of 3.8Ā±0.8 ĀµM. This inhibitor was developed by lead identification using virtual screening followed by computer-aided optimization of a lead with an IC50 value of 100 ĀµM. However, it was difficult to further improve the lead from micromolar to even high nanomolar potency due to the unusually large enzyme-substrate interface of BoNTAe. The enzyme-substrate interface area of 4,840 ƅ2 for BoNTAe is about four times larger than the typical protein-protein interface area of 750ā€“1,500 ƅ2. Inhibitors must carry several functional groups to block the unusually large interface of BoNTAe, and syntheses of such inhibitors are therefore time-consuming and expensive. Herein we report the development of a serotype-selective, small-molecule, and competitive inhibitor of BoNTAe with a Ki value of 760Ā±170 nM using synthesis-based computer-aided molecular design (SBCAMD). This new approach accounts the practicality and efficiency of inhibitor synthesis in addition to binding affinity and selectivity. We also report a three-dimensional model of BoNTAe in complex with the new inhibitor and the dynamics of the complex predicted by multiple molecular dynamics simulations, and discuss further structural optimization to achieve better in vivo efficacy in neutralizing BoNTA than those of our early micromolar leads. This work provides new insight into structural modification of known small-molecule BoNTAe inhibitors. It also demonstrates that SBCAMD is capable of improving potency of an inhibitor lead by nearly one order of magnitude, even for BoNTAe as one of the most challenging protein targets. The results are insightful for developing effective small-molecule inhibitors of protein targets with large active sites
    • ā€¦
    corecore