82 research outputs found

    Degradation of phenol using US/periodate/nZVI system from aqueous solutions

    Get PDF
    In the present work, the degradation of phenol from aqueous solutions was investigated using periodate/zero valent iron nanoparticle (nZVI) in the presence of ultrasound at a batch reactor. The Experimental tests were carried out using pre-designated concentrations of nZVI, periodate, and pH ranging from 1-7 mM, 0.5-5 mM, 3-11 respectively. During the all experimental tests the ultrasonic reactor was operated at a fix frequency (40 kHz), temperature (33±1) and power (350 W). The results of nZVI/periodate/ultrasound system on degradation of phenol showed that the removal efficiency was indeed affected by the amount of free radicals produced to initiate the oxidative decomposition of phenol. also, by increasing the nZVI loading to 3 mM and periodate concentration to 3 mM, the efficiency of phenol removal was increased. Besides, the acidic pH (pH = 3) was found to be more effective than neutral and alkaline pH in degradation of phenol. © 2019 Global NEST Printed in Greece. All rights reserved

    Automatic alignment of surgical videos using kinematic data

    Full text link
    Over the past one hundred years, the classic teaching methodology of "see one, do one, teach one" has governed the surgical education systems worldwide. With the advent of Operation Room 2.0, recording video, kinematic and many other types of data during the surgery became an easy task, thus allowing artificial intelligence systems to be deployed and used in surgical and medical practice. Recently, surgical videos has been shown to provide a structure for peer coaching enabling novice trainees to learn from experienced surgeons by replaying those videos. However, the high inter-operator variability in surgical gesture duration and execution renders learning from comparing novice to expert surgical videos a very difficult task. In this paper, we propose a novel technique to align multiple videos based on the alignment of their corresponding kinematic multivariate time series data. By leveraging the Dynamic Time Warping measure, our algorithm synchronizes a set of videos in order to show the same gesture being performed at different speed. We believe that the proposed approach is a valuable addition to the existing learning tools for surgery.Comment: Accepted at AIME 201

    Removal of bisphenol, using antimony nanoparticle multi-walled carbon nanotubes composite from aqueous solutions

    Get PDF
    This study focuses on preparing Antimony Nanoparticle Multi-walled Carbon (ANMWC) composite as an effective adsorbent and then the effect of produced composite in BPA removal from aqueous solutions was studied. ANMWC were prepared using chemical method and characterized with X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and Brunauer-Emmett-Teller (BET). Moreover, the removal efficiency of prepared AMWCNT and Nanoparticle Multi-walled Carbon (MWCNT) in removal of Bisphenol A was investigated. Results revealed that the BPA removal efficiency by AMWCNT increased from 80 to 93 with the increase of contact time 5 to 60 min. The maximum removal efficiency for the both adsorbents was seen at pH 7, which was 85 for MWCNT and 95 for ANMWC composite. According to the results obtained, pHzpc for both adsorbents was 7. Results showed that the adsorption process followed the pseudo-first order model with a high correlation value and BPA adsorption on MWCNT followed the Langmuir isotherm model

    Informational entropy : a failure tolerance and reliability surrogate for water distribution networks

    Get PDF
    Evolutionary algorithms are used widely in optimization studies on water distribution networks. The optimization algorithms use simulation models that analyse the networks under various operating conditions. The solution process typically involves cost minimization along with reliability constraints that ensure reasonably satisfactory performance under abnormal operating conditions also. Flow entropy has been employed previously as a surrogate reliability measure. While a body of work exists for a single operating condition under steady state conditions, the effectiveness of flow entropy for systems with multiple operating conditions has received very little attention. This paper describes a multi-objective genetic algorithm that maximizes the flow entropy under multiple operating conditions for any given network. The new methodology proposed is consistent with the maximum entropy formalism that requires active consideration of all the relevant information. Furthermore, an alternative but equivalent flow entropy model that emphasizes the relative uniformity of the nodal demands is described. The flow entropy of water distribution networks under multiple operating conditions is discussed with reference to the joint entropy of multiple probability spaces, which provides the theoretical foundation for the optimization methodology proposed. Besides the rationale, results are included that show that the most robust or failure-tolerant solutions are achieved by maximizing the sum of the entropies

    Bacterial contamination of inanimate surfaces and equipment in the intensive care unit

    Get PDF
    Intensive care unit (ICU)-acquired infections are a challenging health problem worldwide, especially when caused by multidrug-resistant (MDR) pathogens. In ICUs, inanimate surfaces and equipment (e.g., bedrails, stethoscopes, medical charts, ultrasound machine) may be contaminated by bacteria, including MDR isolates. Cross-transmission of microorganisms from inanimate surfaces may have a significant role for ICU-acquired colonization and infections. Contamination may result from healthcare workers' hands or by direct patient shedding of bacteria which are able to survive up to several months on dry surfaces. A higher environmental contamination has been reported around infected patients than around patients who are only colonized and, in this last group, a correlation has been observed between frequency of environmental contamination and culture-positive body sites. Healthcare workers not only contaminate their hands after direct patient contact but also after touching inanimate surfaces and equipment in the patient zone (the patient and his/her immediate surroundings). Inadequate hand hygiene before and after entering a patient zone may result in cross-transmission of pathogens and patient colonization or infection. A number of equipment items and commonly used objects in ICU carry bacteria which, in most cases, show the same antibiotic susceptibility profiles of those isolated from patients. The aim of this review is to provide an updated evidence about contamination of inanimate surfaces and equipment in ICU in light of the concept of patient zone and the possible implications for bacterial pathogen cross-transmission to critically ill patients

    Erratum to: Modelling of moving bed biofilm reactor (MBBR) efficiency on hospital wastewater (HW) treatment: a comprehensive analysis on BOD and COD removal

    No full text
    The term ‘HDW’ should be replaced by ‘HW’ throughout the article. ‘HW’ stands for ‘Hospital Wastewater’
    corecore