31 research outputs found

    Efficient overall water splitting in acid with anisotropic metal nanosheets

    Get PDF
    超高効率な水の電気分解を実現するナノシート状合金触媒を開発 --再生可能エネルギーによる水素社会実現へ大きく貢献--. 京都大学プレスリリース. 2021-02-17.Water is the only available fossil-free source of hydrogen. Splitting water electrochemically is among the most used techniques, however, it accounts for only 4% of global hydrogen production. One of the reasons is the high cost and low performance of catalysts promoting the oxygen evolution reaction (OER). Here, we report a highly efficient catalyst in acid, that is, solid-solution Ru‒Ir nanosized-coral (RuIr-NC) consisting of 3 nm-thick sheets with only 6 at.% Ir. Among OER catalysts, RuIr-NC shows the highest intrinsic activity and stability. A home-made overall water splitting cell using RuIr-NC as both electrodes can reach 10 mA cm−2geo at 1.485 V for 120 h without noticeable degradation, which outperforms known cells. Operando spectroscopy and atomic-resolution electron microscopy indicate that the high-performance results from the ability of the preferentially exposed {0001} facets to resist the formation of dissolvable metal oxides and to transform ephemeral Ru into a long-lived catalyst

    Development of a High-intensity Focused Ultrasound Exposure Device for Reducing Skin Burn Risk

    Get PDF
    High-intensity focused ultrasound(HIFU)can non-invasively irradiate inside the body. However, when used to treat fetuses, it can cause thermal burns of the mother’s abdominal wall at the skin interface. This study was carried out to determine whether a modified HIFU transducer enabling split-aperture irradiation can prevent thermal burns. Two HIFU transducers were compared: a conventional transducer using full-aperture irradiation and a modified transducer using split-aperture irradiation. The modified transducer was divided into six sectors for split-aperture irradiation and had a larger surface area and a smaller F number(focal length/aperture diameter)than the conventional transducer. HIFU was delivered to eight sites on the left and right leg of a three-month-old baby pig under general anesthesia, and the sites were assessed for thermal burning by two or more dermatologists. The same person performed all irradiations. Full-aperture irradiation with the conventional transducer caused deep dermal burns at all target sites, while split-aperture irradiation with the modified transducer caused only epidermal burns or superficial dermal burns. Split-aperture irradiation using a modified HIFU transducer with six sectors and a smaller F number reduces the severity of skin burns, and thus will improve the safety of HIFU therapy

    Phase Control of Solid-Solution Nanoparticles beyond the Phase Diagram for Enhanced Catalytic Properties

    Get PDF
    The crystal structure, which intrinsically affects the properties of solids, is determined by the constituent elements and composition of solids. Therefore, it cannot be easily controlled beyond the phase diagram because of thermodynamic limitations. Here, we demonstrate the first example of controlling the crystal structures of a solid-solution nanoparticle (NP) entirely without changing its composition and size. We synthesized face-centered cubic (fcc) or hexagonal close-packed (hcp) structured PdxRu₁–x NPs (x = 0.4, 0.5, and 0.6), although they cannot be synthesized as bulk materials. Crystal-structure control greatly improves the catalytic properties; that is, the hcp-PdxRu₁–x NPs exceed their fcc counterparts toward the oxygen evolution reaction (OER) in corrosive acid. These NPs only require an overpotential (η) of 200 mV at 10 mA cm⁻², can maintain the activity for more than 20 h, greatly outperforming the fcc-Pd₀.₄Ru₀.₆ NPs (η = 280 mV, 9 min), and are among the most efficient OER catalysts reported. Synchrotron X-ray-based spectroscopy, atomic-resolution electron microscopy, and density functional theory (DFT) calculations suggest that the enhanced OER performance of hcp-PdRu originates from the high stability against oxidative dissolution

    Periodontal Tissue Regeneration Using Fibroblast Growth Factor -2: Randomized Controlled Phase II Clinical Trial

    Get PDF
    Background: The options for medical use of signaling molecules as stimulators of tissue regeneration are currently limited. Preclinical evidence suggests that fibroblast growth factor (FGF)-2 can promote periodontal regeneration. This study aimed to clarify the activity of FGF-2 in stimulating regeneration of periodontal tissue lost by periodontitis and to evaluate the safety of such stimulation. Methodology/Principal Findings: We used recombinant human FGF-2 with 3% hydroxypropylcellulose (HPC) as vehicle and conducted a randomized double-blinded controlled trial involving 13 facilities. Subjects comprised 74 patients displaying a 2- or 3-walled vertical bone defect as measured ?3 mm apical to the bone crest. Patients were randomly assigned to 4 groups: Group P, given HPC with no FGF-2; Group L, given HPC containing 0.03% FGF-2; Group M, given HPC cotaining 0.1% FGF-2; and Group H, given HPC Containing 0.3% FGF-2. Each patient underwent flap operation during which we administered 200 μL of the appropriate investigational drug to the bone defect. Before and for 36 weeks following administration, patients underwent periodontal tissue inspections and standardized radiography of the region under investigation. As a result, a significant difference (p = 0.021) in rate of increase in alveolar bone height was identified between Group P (23.92%) and Group H (58.62%) at 36 weeks. The linear increase in alveolar bone height at 36 weeks in Group P and H was 0.95 mm and 1.85 mm, respectively (p = 0.132). No serious adverse events attribute to the investigational drug were identified. Conclusions: Although no statistically significant differences were noted for gains in clinical attachment level and alveolar bone gain for FGF-2 groups versus Group P, the significant difference in rate of increase in alveolar bone height (p = 0.021) between Groups P and H at 36 weeks suggests that some efficacy could be expected from FGF-2 in stimulating regeneration of periodontal tissue in patients with periodontitis

    19. Bottom Fish Composition and Food Habits in the Southern Water off the St. Lawrence Island in the Bering Sea

    Get PDF
    Ⅱ. Reproduction and Recruitment of Keystone Species, and Ecosystem Studie

    Measurement of the Aerodynamic Forces Acting on a Non-Spinning Javelin Using an MSBS

    No full text
    Using the world’s largest magnetic suspension and balance system (MSBS) and a low-turbulence wind tunnel, we successfully measured the aerodynamic forces acting on a non-spinning women’s javelin. It was found that the drag and the lift increased as the angle of attack was increased up to 18°. The pitching moment increased for angles of attack up to about 9°, and then decreased, becoming negative above 12°, indicating nose-down rotation. We used a pseudo supporting rod to simulate a javelin attached to a support, as used in a conventional setup, and confirmed that this interferes with the javelin by creating differences between the aerodynamics forces acting on the javelin with and without the pseudo supporting rod

    A multi-institution phase II study of gemcitabine/cisplatin/S-1 (GCS) combination chemotherapy for patients with advanced biliary tract cancer (KHBO 1002).

    Get PDF
    [Purpose]Gemcitabine/cisplatin combination therapy has been the standard palliative chemotherapy for patients with advanced biliary tract cancer (BTC). We aimed to evaluate the efficacy and safety of adding S-1 to gemcitabine/cisplatin combination therapy for patients with advanced BTC. [Methods]Patients with histologically or cytologically confirmed unresectable or recurrent BTC were eligible for inclusion. The primary end point was overall survival. Based on the results of our preceding phase I study, gemcitabine and cisplatin were administered intravenously at doses of 1, 000 or 25 mg/m2, respectively, on day 1, and oral S-1 was administered daily at a dose of 80 mg/m2 on days 1–7 every 2 weeks. This study was registered with ClinicalTrials.gov (NCT01284413) and the UMIN Clinical Trials Registry (ID 000004468). [Results]Fifty patients enrolled between October 2011 and August 2012 were evaluated. After a median follow-up of 15.1 months (range 2.4–24.4 months), the median overall survival time was 16.2 months [95 % confidence interval (CI) 10.2–22.2 months], and the one-year overall survival rate was 59.9 % (95 % CI 46.2–73.5 %). The grade 3–4 hematological toxicities were as follows: neutropenia (32 %), anemia (32 %), thrombocytopenia (10 %), and febrile neutropenia (4 %). The common grade 3–4 non-hematological toxicities were biliary tract infection (14 %), anorexia/nausea (10 %), and fatigue (8 %). [Conclusions]Gemcitabine/cisplatin/S-1 combination chemotherapy offered a promising survival benefit with manageable toxicity in patients with advanced BTC. A randomized phase III trial to investigate the efficacy of this regimen compared to gemcitabine/cisplatin combination therapy in patients with advanced BTC is now underway (UMIN000014371/NCT02182778)

    Experimental necrotizing enterocolitis induces neuroinflammation in the neonatal brain

    No full text
    Abstract Background Necrotizing enterocolitis (NEC) is an inflammatory gastrointestinal disease primarily affecting preterm neonates. Neonates with NEC suffer from a degree of neurodevelopmental delay that is not explained by prematurity alone. There is a need to understand the pathogenesis of neurodevelopmental delay in NEC. In this study, we assessed the macroscopic and microscopic changes that occur to brain cell populations in specific brain regions in a neonatal mouse model of NEC. Moreover, we investigated the role of intestinal inflammation as part of the mechanism responsible for the changes observed in the brain of pups with NEC. Methods Brains of mice were assessed for gross morphology and cerebral cortex thickness (using histology). Markers for mature neurons, oligodendrocytes, neural progenitor cells, microglia, and astrocytes were used to quantify their cell populations in different regions of the brain. Levels of cell apoptosis in the brain were measured by Western blotting and immunohistochemistry. Endoplasmic reticulum (ER) stress markers and levels of pro-inflammatory cytokines (in the ileum and brain) were measured by RT-qPCR and Western blotting. A Pearson test was used to correlate the levels of cytokines (ELISA) in the brain and ileum and to correlate activated microglia and astrocyte populations to the severity of NEC. Results NEC pups had smaller brain weights, higher brain-to-body weight ratios, and thinner cortices compared to control pups. NEC pups had increased levels of apoptosis and ER stress. In addition, NEC was associated with a reduction in the number of neurons, oligodendrocytes, and neural progenitors in specific regions of the brain. Levels of pro-inflammatory cytokines and the density of activated microglia and astrocytes were increased in the brain and positively correlated with the increase in the levels pro-inflammatory cytokines in the gut and the severity of NEC damage respectively. Conclusions NEC is associated with severe changes in brain morphology, a pro-inflammatory response in the brain that alters cell homeostasis and density of brain cell populations in specific cerebral regions. We show that the severity of neuroinflammation is associated with the severity of NEC. Our findings suggest that early intervention during NEC may reduce the chance of acute neuroinflammation and cerebral damage
    corecore