208 research outputs found

    Cryptotomography: reconstructing 3D Fourier intensities from randomly oriented single-shot diffraction patterns

    Full text link
    We reconstructed the 3D Fourier intensity distribution of mono-disperse prolate nano-particles using single-shot 2D coherent diffraction patterns collected at DESY's FLASH facility when a bright, coherent, ultrafast X-ray pulse intercepted individual particles of random, unmeasured orientations. This first experimental demonstration of cryptotomography extended the Expansion-Maximization-Compression (EMC) framework to accommodate unmeasured fluctuations in photon fluence and loss of data due to saturation or background scatter. This work is an important step towards realizing single-shot diffraction imaging of single biomolecules.Comment: 4 pages, 4 figure

    Electronic damage in S atoms in a native protein crystal induced by an intense X-ray free-electron laser pulse

    Get PDF
    Current hard X-ray free-electron laser (XFEL) sources can deliver doses to biological macromolecules well exceeding 1 GGy, in timescales of a few tens of femtoseconds. During the pulse, photoionization can reach the point of saturation in which certain atomic species in the sample lose most of their electrons. This electronic radiation damage causes the atomic scattering factors to change, affecting, in particular, the heavy atoms, due to their higher photoabsorption cross sections. Here, it is shown that experimental serial femtosecond crystallography data collected with an extremely bright XFEL source exhibit a reduction of the effective scattering power of the sulfur atoms in a native protein. Quantitative methods are developed to retrieve information on the effective ionization of the damaged atomic species from experimental data, and the implications of utilizing new phasing methods which can take advantage of this localized radiation damage are discussed

    Viscous hydrophilic injection matrices for serial crystallography

    Get PDF
    Serial (femtosecond) crystallography at synchrotron and X-ray free-electron laser (XFEL) sources distributes the absorbed radiation dose over all crystals used for data collection and therefore allows measurement of radiation damage prone systems, including the use of microcrystals for room-temperature measurements. Serial crystallography relies on fast and efficient exchange of crystals upon X-ray exposure, which can be achieved using a variety of methods, including various injection techniques. The latter vary significantly in their flow rates – gas dynamic virtual nozzle based injectors provide very thin fast-flowing jets, whereas high-viscosity extrusion injectors produce much thicker streams with flow rates two to three orders of magnitude lower. High-viscosity extrusion results in much lower sample consumption, as its sample delivery speed is commensurate both with typical XFEL repetition rates and with data acquisition rates at synchrotron sources. An obvious viscous injection medium is lipidic cubic phase (LCP) as it is used for in meso membrane protein crystallization. However, LCP has limited compatibility with many crystallization conditions. While a few other viscous media have been described in the literature, there is an ongoing need to identify additional injection media for crystal embedding. Critical attributes are reliable injection properties and a broad chemical compatibility to accommodate samples as heterogeneous and sensitive as protein crystals. Here, the use of two novel hydro­gels as viscous injection matrices is described, namely sodium carb­oxy­methyl cellulose and the thermo-reversible block polymer Pluronic F-127. Both are compatible with various crystallization conditions and yield acceptable X-ray background. The stability and velocity of the extruded stream were also analysed and the dependence of the stream velocity on the flow rate was measured. In contrast with previously characterized injection media, both new matrices afford very stable adjustable streams suitable for time-resolved measurements

    Atomic structure of granulin determined from native nanocrystalline granulovirus using an X-ray free-electron laser

    Get PDF
    To understand how molecules function in biological systems, new methods are required to obtain atomic resolution structures from biological material under physiological conditions. Intense femtosecond-duration pulses from X-ray free-electron lasers (XFELs) can outrun most damage processes, vastly increasing the tolerable dose before the specimen is destroyed. This in turn allows structure determination from crystals much smaller and more radiation sensitive than previously considered possible, allowing data collection from room temperature structures and avoiding structural changes due to cooling. Regardless, high-resolution structures obtained from XFEL data mostly use crystals far larger than 1 ÎĽm3 in volume, whereas the X-ray beam is often attenuated to protect the detector from damage caused by intense Bragg spots. Here, we describe the 2 Ă… resolution structure of native nanocrystalline granulovirus occlusion bodies (OBs) that are less than 0.016 ÎĽm3 in volume using the full power of the Linac Coherent Light Source (LCLS) and a dose up to 1.3 GGy per crystal. The crystalline shell of granulovirus OBs consists, on average, of about 9,000 unit cells, representing the smallest protein crystals to yield a high-resolution structure by X-ray crystallography to date. The XFEL structure shows little to no evidence of radiation damage and is more complete than a model determined using synchrotron data from recombinantly produced, much larger, cryocooled granulovirus granulin microcrystals. Our measurements suggest that it should be possible, under ideal experimental conditions, to obtain data from protein crystals with only 100 unit cells in volume using currently available XFELs and suggest that single-molecule imaging of individual biomolecules could almost be within reach

    Influence of pump laser fluence on ultrafast structural changes in myoglobin

    Get PDF
    High-intensity femtosecond pulses from an X-ray free-electron laser enable pump probe experiments for investigating electronic and nuclear changes during light-induced reactions. On time scales ranging from femtoseconds to milliseconds and for a variety of biological systems, time-resolved serial femtosecond crystallography (TR-SFX) has provided detailed structural data for light-induced isomerization, breakage or formation of chemical bonds and electron transfer. However, all ultra-fast TR-SFX studies to date have employed such high pump laser energies that several photons were nominally absorbed per chromophore. As multiphoton absorption may force the protein response into nonphysiological pathways, it is of great concern whether this experimental approach allows valid inferences to be drawn vis-a-vis biologically relevant single-photon-induced reactions. Here we describe ultrafast pump-probe SFX experiments on photodissociation of carboxymyoglobin, showing that different pump laser fluences yield markedly different results. In particular, the dynamics of structural changes and observed indicators of the mechanistically important coherent oscillations of the Fe-CO bond distance (predicted by recent quantum wavepacket dynamics) are seen to depend strongly on pump laser energy. Our results confirm both the feasibility and necessity of performing TR-SFX pump probe experiments in the linear photoexcitation regime. We consider this to be a starting point for reassessing design and interpretation of ultrafast TR-SFX pump probe experiments such that biologically relevant insight emerges

    Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography

    Get PDF
    Serial femtosecond crystallography is an X-ray free-electron-laser-based method with considerable potential to have an impact on challenging problems in structural biology. Here we present X-ray diffraction data recorded from microcrystals of the Blastochloris viridis photosynthetic reaction centre to 2.8 angstrom resolution and determine its serial femtosecond crystallography structure to 3.5 angstrom resolution. Although every microcrystal is exposed to a dose of 33MGy, no signs of X-ray-induced radiation damage are visible in this integral membrane protein structure

    Femtosecond dark-field imaging with an X-ray free electron laser

    Get PDF
    The emergence of femtosecond diffractive imaging with X-ray lasers has enabled pioneering structural studies of isolated particles, such as viruses, at nanometer length scales. However, the issue of missing low frequency data significantly limits the potential of X-ray lasers to reveal sub-nanometer details of micrometer-sized samples. We have developed a new technique of dark-field coherent diffractive imaging to simultaneously overcome the missing data issue and enable us to harness the unique contrast mechanisms available in dark-field microscopy. Images of airborne particulate matter (soot) up to two microns in length were obtained using single-shot diffraction patterns obtained at the Linac Coherent Light Source, four times the size of objects previously imaged in similar experiments. This technique opens the door to femtosecond diffractive imaging of a wide range of micrometer-sized materials that exhibit irreproducible complexity down to the nanoscale, including airborne particulate matter, small cells, bacteria and gold-labeled biological samples. (C) 2012 Optical Society of Americ

    crystal and solution structures of the multidomain cochaperone DnaJ

    Get PDF
    Hsp70 chaperones assist in a large variety of protein-folding processes in the cell. Crucial for these activities is the regulation of Hsp70 by Hsp40 cochaperones. DnaJ, the bacterial homologue of Hsp40, stimulates ATP hydrolysis by DnaK (Hsp70) and thus mediates capture of substrate protein, but is also known to possess chaperone activity of its own. The first structure of a complete functional dimeric DnaJ was determined and the mobility of its individual domains in solution was investigated. Crystal structures of the complete molecular cochaperone DnaJ from Thermus thermophilus comprising the J, GF and C-terminal domains and of the J and GF domains alone showed an ordered GF domain interacting with the J domain. Structure-based EPR spin- labelling studies as well as cross-linking results showed the existence of multiple states of DnaJ in solution with different arrangements of the various domains, which has implications for the function of DnaJ.1\. Auflag

    Single-shot diffraction data from the Mimivirus particle using an X-ray free-electron laser

    Get PDF
    Citation: Ekeberg, T., Svenda, M., Seibert, M. M., Abergel, C., Maia, F. R. N. C., Seltzer, V., . . . Hajdu, J. (2016). Single-shot diffraction data from the Mimivirus particle using an X-ray free-electron laser. Scientific Data, 3. doi:10.1038/sdata.2016.60Free-electron lasers (FEL) hold the potential to revolutionize structural biology by producing X-ray pules short enough to outrun radiation damage, thus allowing imaging of biological samples without the limitation from radiation damage. Thus, a major part of the scientific case for the first FELs was three-dimensional (3D) reconstruction of non-crystalline biological objects. In a recent publication we demonstrated the first 3D reconstruction of a biological object from an X-ray FEL using this technique. The sample was the giant Mimivirus, which is one of the largest known viruses with a diameter of 450 nm. Here we present the dataset used for this successful reconstruction. Data-analysis methods for single-particle imaging at FELs are undergoing heavy development but data collection relies on very limited time available through a highly competitive proposal process. This dataset provides experimental data to the entire community and could boost algorithm development and provide a benchmark dataset for new algorithms
    • …
    corecore