528 research outputs found

    Near-Ultraviolet and Visible Spectroscopy of HAYABUSA Spacecraft Re-entry

    Full text link
    HAYABUSA is the first spacecraft ever to land on and lift off from any celestial body other than the moon. The mission, which returned asteroid samples to the Earth while overcoming various technical hurdles, ended on June 13, 2010, with the planned atmospheric re-entry. In order to safely deliver the sample return capsule, the HAYABUSA spacecraft ended its 7-year journey in a brilliant "artificial fireball" over the Australian desert. Spectroscopic observation was carried out in the near-ultraviolet and visible wavelengths between 3000 and 7500 \AA at 3 - 20 \AA resolution. Approximately 100 atomic lines such as Fe I, Mg I, Na I, Al I, Cr I, Mn I, Ni I, Ti I, Li I, Zn I, O I, and N I were identified from the spacecraft. Exotic atoms such as Cu I, Mo I, Xe I and Hg I were also detected. A strong Li I line (6708 \AA) at a height of ~55 km originated from the onboard Li-Ion batteries. The FeO molecule bands at a height of ~63 km were probably formed in the wake of the spacecraft. The effective excitation temperature as determined from the atomic lines varied from 4500 K to 6000 K. The observed number density of Fe I was about 10 times more abundant than Mg I after the spacecraft explosion. N2+(1-) bands from a shock layer and CN violet bands from the sample return capsule's ablating heat shield were dominant molecular bands in the near-ultraviolet region of 3000 - 4000 \AA. OH(A-X) band was likely to exist around 3092 \AA. A strong shock layer from the HAYABUSA spacecraft was rapidly formed at heights between 93 km and 83 km, which was confirmed by detection of N2+(1-) bands with a vibration temperature of ~13000 K. Gray-body temperature of the capsule at a height of ~42 km was estimated to be ~2437 K which is matched to a theoretical prediction. The final message of the HAYABUSA spacecraft and its sample return capsule are discussed through our spectroscopy.Comment: Accepted for publication in PASJ, 22 pages, 7 figures, 6 table

    Adaptive thermal compensation of test masses in advanced LIGO

    Get PDF
    As the first generation of laser interferometric gravitational wave detectors near operation, research and development has begun on increasing the instrument's sensitivity while utilizing the existing infrastructure. In the Laser Interferometer Gravitational Wave Observatory (LIGO), significant improvements are being planned for installation in ~2007, increasing strain sensitivity through improved suspensions and test mass substrates, active seismic isolation, and higher input laser power. Even with the highest quality optics available today, however, finite absorption of laser power within transmissive optics, coupled with the tremendous amount of optical power circulating in various parts of the interferometer, result in critical wavefront deformations which would cripple the performance of the instrument. Discussed is a method of active wavefront correction via direct thermal actuation on optical elements of the interferometer. A simple nichrome heating element suspended off the face of an affected optic will, through radiative heating, remove the gross axisymmetric part of the original thermal distortion. A scanning heating laser will then be used to remove any remaining non-axisymmetric wavefront distortion, generated by inhomogeneities in the substrate's absorption, thermal conductivity, etc. A proof-of-principle experiment has been constructed at MIT, selected data of which are presented.Comment: 11 pages, 7 figures, submitted to Classical and Quantum Gravit

    Microarray analysis of iron deficiency chlorosis in near-isogenic soybean lines

    Get PDF
    BACKGROUND: Iron is one of fourteen mineral elements required for proper plant growth and development of soybean (Glycine max L. Merr.). Soybeans grown on calcareous soils, which are prevalent in the upper Midwest of the United States, often exhibit symptoms indicative of iron deficiency chlorosis (IDC). Yield loss has a positive linear correlation with increasing severity of chlorotic symptoms. As soybean is an important agronomic crop, it is essential to understand the genetics and physiology of traits affecting plant yield. Soybean cultivars vary greatly in their ability to respond successfully to iron deficiency stress. Microarray analyses permit the identification of genes and physiological processes involved in soybean's response to iron stress. RESULTS: RNA isolated from the roots of two near isogenic lines, which differ in iron efficiency, PI 548533 (Clark; iron efficient) and PI 547430 (IsoClark; iron inefficient), were compared on a spotted microarray slide containing 9,728 cDNAs from root specific EST libraries. A comparison of RNA transcripts isolated from plants grown under iron limiting hydroponic conditions for two weeks revealed 43 genes as differentially expressed. A single linkage clustering analysis of these 43 genes showed 57% of them possessed high sequence similarity to known stress induced genes. A control experiment comparing plants grown under adequate iron hydroponic conditions showed no differences in gene expression between the two near isogenic lines. Expression levels of a subset of the differentially expressed genes were also compared by real time reverse transcriptase PCR (RT-PCR). The RT-PCR experiments confirmed differential expression between the iron efficient and iron inefficient plants for 9 of 10 randomly chosen genes examined. To gain further insight into the iron physiological status of the plants, the root iron reductase activity was measured in both iron efficient and inefficient genotypes for plants grown under iron sufficient and iron limited conditions. Iron inefficient plants failed to respond to decreased iron availability with increased activity of Fe reductase. CONCLUSION: These experiments have identified genes involved in the soybean iron deficiency chlorosis response under iron deficient conditions. Single linkage cluster analysis suggests iron limited soybeans mount a general stress response as well as a specialized iron deficiency stress response. Root membrane bound reductase capacity is often correlated with iron efficiency. Under iron-limited conditions, the iron efficient plant had high root bound membrane reductase capacity while the iron inefficient plants reductase levels remained low, further limiting iron uptake through the root. Many of the genes up-regulated in the iron inefficient NIL are involved in known stress induced pathways. The most striking response of the iron inefficient genotype to iron deficiency stress was the induction of a profusion of signaling and regulatory genes, presumably in an attempt to establish and maintain cellular homeostasis. Genes were up-regulated that point toward an increased transport of molecules through membranes. Genes associated with reactive oxidative species and an ROS-defensive enzyme were also induced. The up-regulation of genes involved in DNA repair and RNA stability reflect the inhospitable cellular environment resulting from iron deficiency stress. Other genes were induced that are involved in protein and lipid catabolism; perhaps as an effort to maintain carbon flow and scavenge energy. The under-expression of a key glycolitic gene may result in the iron-inefficient genotype being energetically challenged to maintain a stable cellular environment. These experiments have identified candidate genes and processes for further experimentation to increase our understanding of soybeans' response to iron deficiency stress

    Asymmetric WIMP dark matter

    Full text link
    In existing dark matter models with global symmetries the relic abundance of dark matter is either equal to that of anti-dark matter (thermal WIMP), or vastly larger, with essentially no remaining anti-dark matter (asymmetric dark matter). By exploring the consequences of a primordial asymmetry on the coupled dark matter and anti-dark matter Boltzmann equations we find large regions of parameter space that interpolate between these two extremes. Interestingly, this new asymmetric WIMP framework can accommodate a wide range of dark matter masses and annihilation cross sections. The present-day dark matter population is typically asymmetric, but only weakly so, such that indirect signals of dark matter annihilation are not completely suppressed. We apply our results to existing models, noting that upcoming direct detection experiments will constrain a large region of the relevant parameter space.Comment: 32 pages, 6 figures, updated references, updated XENON100 bounds, typo in figure caption correcte

    The Samurai Project: verifying the consistency of black-hole-binary waveforms for gravitational-wave detection

    Get PDF
    We quantify the consistency of numerical-relativity black-hole-binary waveforms for use in gravitational-wave (GW) searches with current and planned ground-based detectors. We compare previously published results for the (ℓ=2,∣m∣=2)(\ell=2,| m | =2) mode of the gravitational waves from an equal-mass nonspinning binary, calculated by five numerical codes. We focus on the 1000M (about six orbits, or 12 GW cycles) before the peak of the GW amplitude and the subsequent ringdown. We find that the phase and amplitude agree within each code's uncertainty estimates. The mismatch between the (ℓ=2,∣m∣=2)(\ell=2,| m| =2) modes is better than 10−310^{-3} for binary masses above 60M⊙60 M_{\odot} with respect to the Enhanced LIGO detector noise curve, and for masses above 180M⊙180 M_{\odot} with respect to Advanced LIGO, Virgo and Advanced Virgo. Between the waveforms with the best agreement, the mismatch is below 2×10−42 \times 10^{-4}. We find that the waveforms would be indistinguishable in all ground-based detectors (and for the masses we consider) if detected with a signal-to-noise ratio of less than ≈14\approx14, or less than ≈25\approx25 in the best cases.Comment: 17 pages, 9 figures. Version accepted by PR

    Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration

    Get PDF
    The Numerical-Relativity-Analytical-Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the effective-one-body (EOB) and phenomenological template families, to the newly-produced numerical waveforms. We find that when the binary's total mass is ~100-200 solar masses, current EOB and phenomenological models of spinning, non-precessing binary waveforms have overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary numerical waveforms with mass ratios <= 4, when maximizing over binary parameters. This implies that the loss of event rate due to modelling error is below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to five non-spinning waveforms with mass ratio smaller than 6 have overlaps above 99.7% with the numerical waveform with a mass ratio of 10, without even maximizing on the binary parameters.Comment: 51 pages, 10 figures; published versio

    Global invasion history of the agricultural pest butterfly revealed with genomics and citizen science.

    Get PDF
    The small cabbage white butterfly, , is a major agricultural pest of cruciferous crops and has been introduced to every continent except South America and Antarctica as a result of human activities. In an effort to reconstruct the near-global invasion history of , we developed a citizen science project, the "Pieris Project," and successfully amassed thousands of specimens from 32 countries worldwide. We then generated and analyzed nuclear (double-digest restriction site-associated DNA fragment procedure [ddRAD]) and mitochondrial DNA sequence data for these samples to reconstruct and compare different global invasion history scenarios. Our results bolster historical accounts of the global spread and timing of introductions. We provide molecular evidence supporting the hypothesis that the ongoing divergence of the European and Asian subspecies of (∼1,200 y B.P.) coincides with the diversification of brassicaceous crops and the development of human trade routes such as the Silk Route (Silk Road). The further spread of over the last ∼160 y was facilitated by human movement and trade, resulting in an almost linear series of at least 4 founding events, with each introduced population going through a severe bottleneck and serving as the source for the next introduction. Management efforts of this agricultural pest may need to consider the current existence of multiple genetically distinct populations. Finally, the international success of the Pieris Project demonstrates the power of the public to aid scientists in collections-based research addressing important questions in invasion biology, and in ecology and evolutionary biology more broadly
    • …
    corecore