151 research outputs found

    Acoustic Enhancement of Polymer/ZnO Nanorod Photovoltaic Device Performance

    Get PDF
    Leverhulme Trust and EPSRC. Grant Numbers: EP/J500021/1, EP/G037515/1

    Acoustic enhancement of polymer/ZnO nanorod photovoltaic device performance

    Get PDF
    Acoustic vibrations are shown to enhance the photovoltaic efficiency of a P3HT/ZnO nanorod solar cell by up to 45%, correlated to a three‐fold increase in charge carrier lifetime. This is assigned to the generation of piezoelectric dipoles in the ZnO nanorods, indicating that the efficiency of solar cells may be enhanced in the presence of ambient vibrations by the use of piezoelectric materials

    Intercalated vs Nonintercalated Morphologies in Donor-Acceptor Bulk Heterojunction Solar Cells: PBTTT:Fullerene Charge Generation and Recombination Revisited

    Get PDF
    In this Letter, we study the role of the donor:acceptor interface nanostructure upon charge separation and recombination in organic photovoltaic devices and blend films, using mixtures of PBTTT and two different fullerene derivatives (PC70BM and ICTA) as models for intercalated and nonintercalated morphologies, respectively. Thermodynamic simulations show that while the completely intercalated system exhibits a large free-energy barrier for charge separation, this barrier is significantly lower in the nonintercalated system and almost vanishes when energetic disorder is included in the model. Despite these differences, both femtosecond-resolved transient absorption spectroscopy (TAS) and time-delayed collection field (TDCF) exhibit extensive first-order losses in both systems, suggesting that geminate pairs are the primary product of photoexcitation. In contrast, the system that comprises a combination of fully intercalated polymer:fullerene areas and fullerene-aggregated domains (1:4 PBTTT:PC70BM) is the only one that shows slow, second-order recombination of free charges, resulting in devices with an overall higher short-circuit current and fill factor. This study therefore provides a novel consideration of the role of the interfacial nanostructure and the nature of bound charges and their impact upon charge generation and recombination

    Defining paleoclimatic routes and opportunities for hominin dispersals across Iran

    Get PDF
    Fossil and archaeological evidence indicates that hominin dispersals into Southwest Asia occurred throughout the Pleistocene, including the expansion of Homo sapiens populations out of Africa. While there is evidence for hominin occupations in the Pleistocene in Iran, as evidenced by the presence of Lower to Upper Paleolithic archaeological sites, the extent to which humid periods facilitated population expansions into western Asia has remained unclear. To test the role of humid periods on hominin dispersals here we assess Paleolithic site distributions and paleoenvironmental records across Iran. We developed the first spatially comprehensive, high-resolution paleohydrological model for Iran in order to assess water availability and its influence on hominin dispersals. We highlight environmentally mediated routes which likely played a key role in Late Pleistocene hominin dispersals, including the expansion of H. sapiens and Neanderthals eastwards into Asia. Our combined analyses indicate that, during MIS 5, there were opportunities for hominins to traverse a northern route through the Alborz and Kopet Dagh Mountains and the Dasht-I Kavir desert owing to the presence of activated fresh water sources. We recognize a new southern route along the Zagros Mountains and extending eastwards towards Pakistan and Afghanistan. We find evidence for a potential northern route during MIS 3, which would have permitted hominin movements and species interactions in Southwest Asia. Between humid periods, these interconnections would have waned, isolating populations in the Zagros and Alborz Mountains, where hominins may have continued to have had access to water

    Orders of Recombination in Complete Perovskite Solar Cells – Linking Time-Resolved and Steady-State Measurements

    Get PDF
    Funder: EPSRC; Id: http://dx.doi.org/10.13039/501100000266Abstract: Ideally, the charge carrier lifetime in a solar cell is limited by the radiative free carrier recombination in the absorber which is a second‐order process. Yet, real‐life cells suffer from severe nonradiative recombination in the bulk of the absorber, at interfaces, or within other functional layers. Here, the dynamics of photogenerated charge carriers are probed directly in pin‐type mixed halide perovskite solar cells with an efficiency >20%, using time‐resolved optical absorption spectroscopy and optoelectronic techniques. The charge carrier dynamics in complete devices is fully consistent with a superposition of first‐, second‐, and third‐order recombination processes, with no admixture of recombination pathways with non‐integer order. Under solar illumination, recombination in the studied solar cells proceeds predominantly through nonradiative first‐order recombination with a lifetime of 250 ns, which competes with second‐order free charge recombination which is mostly if not entirely radiative. Results from the transient experiments are further employed to successfully explain the steady‐state solar cell properties over a wide range of illumination intensities. It is concluded that improving carrier lifetimes to >3 µs will take perovskite devices into the radiative regime, where their performance will benefit from photon‐recycling

    Endoscopic mucosal resection: still a reliable therapeutic option for gastrointestinal neuroendocrine tumors

    Get PDF
    Background: Neuroendocrine tumors (NETs), as a rare and heterogeneous category of solid tumors, feature various morphologies and behaviors. In recent years, the incidence of NETs has continued to increase. Endoscopic mucosal resection (EMR) is one of the therapeutic modalities for the treatment of gastric and rectal NETs. Methods: We evaluated patients with well-differentiated NETs of the stomach, duodenum, or rectum between 2011 and 2018. In this study, all cases with tumors confined to the mucosal or submucosal layers and smaller than 20 mm were resected using the EMR technique. We used EUS, CT scan, or MRI to exclude patients with advanced disease. All patients were actively monitored for recurrence according to the recommended protocols. Results: A total of 36 patients with NETs entered the study; 17 (47.2) were female and the remaining 19 (52.8) were male, with a total age range of 20�74 years (mean: 52.47 ± 13.47 years). Among the tumors, 31 cases (86.1) were G1 and the remaining 5 (13.9) were G2. Based on the pathology reports, 22 tumors (61.1) were smaller than 1 cm, while the remaining 14 (38.9) were between 1�2 cm. Twenty-two patients (61.1) had a margin of specimen involved with the tumor. No recurrence was observed during the mean follow-up time of 63.5 ± 19.8 months (range: 39�103 months). All 36 cases survived during the study period. Conclusion: Conventional EMR procedure provides low chance of R0 (complete resection) achievement in gastrointestinal NETs smaller than 20 mm and limited to the mucosa or sub mucosa. However, it could be an option if patients are closely followed. Postoperative marginal involvement is not a reliable predictor of disease recurrence, which may be explained by the deleterious effect of heat coagulation and cauterization applied during tumor removal. © 2021, The Author(s)

    Insight into the origin of trapping in polymer/fullerene blends with a systematic alteration of the fullerene to higher adducts

    Get PDF
    The bimolecular recombination characteristics of conjugated polymer poly[(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(2,5-bis 3-tetradecylthiophen-2-yl thiazolo 5,4-d thiazole)-2,5diyl] (PDTSiTTz) blended with the fullerene series PC60BM, ICMA, ICBA, and ICTA have been investigated using microsecond and femtosecond transient absorption spectroscopy, in conjunction with electroluminescence measurements and ambient photoemission spectroscopy. The non-Langevin polymer PDTSiTTz allows an inspection of intrinsic bimolecular recombination rates uninhibited by diffusion, while the low oscillator strengths of fullerenes allow polymer features to dominate, and we compare our results to those of the well-known polymer Si-PCPDTBT. Using μs-TAS, we have shown that the trap-limited decay dynamics of the PDTSiTTz polaron becomes progressively slower across the fullerene series, while those of Si-PCPDTBT are invariant. Electroluminescence measurements showed an unusual double peak in pristine PDTSiTTz, attributed to a low energy intragap charge transfer state, likely interchain in nature. Furthermore, while the pristine PDTSiTTz showed a broad, low-intensity density of states, the ICBA and ICTA blends presented a virtually identical DOS to Si-PCPDTBT and its blends. This has been attributed to a shift from a delocalized, interchain highest occupied molecular orbital (HOMO) in the pristine material to a dithienosilole-centered HOMO in the blends, likely a result of the bulky fullerenes increasing interchain separation. This HOMO localization had a side effect of progressively shifting the polymer HOMO to shallower energies, which was correlated with the observed decrease in bimolecular recombination rate and increased “trap” depth. However, since the density of tail states remained the same, this suggests that the traditional viewpoint of “trapping” being dominated by tail states may not encompass the full picture and that the breadth of the DOS may also have a strong influence on bimolecular recombination
    corecore