109 research outputs found

    In vitro potency, in vitro and in vivo efficacy of liposomal alendronate in combination with γδ T cell immunotherapy in mice

    Get PDF
    Nitrogen-containing bisphosphonate (N-BP), including zoledronic acid (ZOL) and alendronate (ALD), have been proposed as sensitisers in γδ T cell immunotherapy in pre-clinical and clinical studies. Therapeutic efficacy of N-BPs is hampered by their rapid renal excretion and high affinity for bone. Liposomal formulations of N-BP have been proposed to improve accumulation in solid tumours. Liposomal alendronate (L-ALD) has been suggested as a suitable alternative to liposomal ZOL (L-ZOL), due to unexpected mice death experienced in pre-clinical studies with the latter. Only one study so far has proven the therapeutic efficacy of L-ALD, in combination with γδ T cell immunotherapy, after intraperitoneal administration of γδ T cell resulting in delayed growth of ovarian cancer in mice. This study aims to assess the in vitro efficacy of L-ALD, in combination with γδ T cell immunotherapy, in a range of cancerous cell lines, using L-ZOL as a comparator. The therapeutic efficacy was tested in a pseudo-metastatic lung mouse model, following intravenous injection of γδ T cell, L-ALD or the combination. In vivo biocompatibility and organ biodistribution studies of L-BPs were undertaken simultaneously. Higher concentrations of L-ALD (40–60 μM) than L-ZOL (3–10 μM) were required to produce a comparative reduction in cell viability in vitro, when used in combination with γδ T cells. Significant inhibition of tumour growth was observed after treatment with both L-ALD and γδ T cells in pseudo-metastatic lung melanoma tumour-bearing mice after tail vein injection of both treatments, suggesting that therapeutically relevant concentrations of L-ALD and γδ T cell could be achieved in the tumour sites, resulting in significant delay in tumour growth

    Interference of flavonoids with enzymatic assays for the determination of free fatty acid and triglyceride levels

    Get PDF
    Flavonoids are bioactive food compounds with potential lipid-lowering effects. Commercially available enzymatic assays are widely used to determine free fatty acid (FFA) and triglyceride (TG) levels both in vivo in plasma or serum and in vitro in cell culture medium or cell lysate. However, we have observed that various flavonoids interfere with peroxidases used in these enzymatic assays, resulting in incorrect lower FFA and TG levels than actually present. Furthermore, addition of isorhamnetin or the major metabolite of the flavonoid quercetin in human and rat plasma, quercetin-3-O-glucuronide, to murine serum also resulted in a significant reduction of the detected TG levels, while a trend was seen for FFA levels. It is concluded that when applying these assays, vigilance is needed and alternative analytical methods, directly assessing FFA or TG levels, should be used for studying the biological effects of flavonoids on FFA and TG levels

    Microarray analysis of gene expression profiles of cardiac myocytes and fibroblasts after mechanical stress, ionising or ultraviolet radiation

    Get PDF
    BACKGROUND: During excessive pressure or volume overload, cardiac cells are subjected to increased mechanical stress (MS). We set out to investigate how the stress response of cardiac cells to MS can be compared to genotoxic stresses induced by DNA damaging agents. We chose for this purpose to use ionising radiation (IR), which during mediastinal radiotherapy can result in cardiac tissue remodelling and diminished heart function, and ultraviolet radiation (UV) that in contrast to IR induces high concentrations of DNA replication- and transcription-blocking lesions. RESULTS: Cultures enriched for neonatal rat cardiac myocytes (CM) or fibroblasts were subjected to any one of the three stressors. Affymetrix microarrays, analysed with Linear Modelling on Probe Level, were used to determine gene expression patterns at 24 hours after (the start of) treatment. The numbers of differentially expressed genes after UV were considerably higher than after IR or MS. Remarkably, after all three stressors the predominant gene expression response in CM-enriched fractions was up-regulation, while in fibroblasts genes were more frequently down-regulated. To investigate the activation or repression of specific cellular pathways, genes present on the array were assigned to 25 groups, based on their biological function. As an example, in the group of cholesterol biosynthesis a significant proportion of genes was up-regulated in CM-enriched fractions after MS, but down-regulated after IR or UV. CONCLUSION: Gene expression responses after the types of cellular stress investigated (MS, IR or UV) have a high stressor and cell type specificity

    Caveolin contributes to the modulation of basal and β-adrenoceptor stimulated function of the adult rat ventricular myocyte by simvastatin: A novel pleiotropic effect

    Get PDF
    The number of people taking statins is increasing across the globe, highlighting the Importance of fully understanding statins effects on the cardiovascular system. The beneficial impact of statins extends well beyond regression of atherosclerosis to include direct effects on tissues of the cardiovascular system (pleiotropic effects). Pleiotropic effects on the cardiac myocyte are often overlooked. Here we consider the contribution of the caveolin protein, whose expression and cellular distribution is dependent on cholesterol, to statin effects on the cardiac myocyte. Caveolin is a structural and regulatory component of caveolae, and is a key regulator of cardiac contractile function and adrenergic responsiveness. We employed an experimental model in which inhibition of myocyte HMG CoA reductase could be studied in the absence of paracrine influences from non-myocyte cells. Adult rat ventricular myocytes were treated with 10 μM simvastatin for 2 days. Simvastatin treatment reduced myocyte cholesterol, caveolin 3 and caveolar density. Negative inotropic and positive lusitropic effects (with corresponding changes in [Ca2]¡) were seen in statin-treated cells. Simvastatin significantly potentiated the inotropic response to β2-, but not β1-, adrenoceptor stimulation. Under conditions of β2-adrenoceptor stimulation, phosphorylation of phospholamban at Ser16and troponin I at Ser23/24was enhanced with statin treatment. Simvastatin increased NO production without significant effects on eNOS expression or phosphorylation (Ser1177), consistent with the reduced expression of caveolin 3, its constitutive Inhibitor. In conclusion, statin treatment can reduce caveolin 3 expression, with functional consequences consistent with the known role of caveolae in the cardiac cell. These data are likely to be of significance, particularly during the early phases of statin treatment, and in patients with heart failure who have altered ß-adrenoceptor signalling. In addition, as caveolin is ubiquitously expressed and has myriad tissue-specific functions, the impact of statin-dependent changes in caveolin is likely to have many other functional sequelae

    Fabrication Principles and Their Contribution to the Superior In Vivo Therapeutic Efficacy of Nano-Liposomes Remote Loaded with Glucocorticoids

    Get PDF
    We report here the design, development and performance of a novel formulation of liposome- encapsulated glucocorticoids (GCs). A highly efficient (>90%) and stable GC encapsulation was obtained based on a transmembrane calcium acetate gradient driving the active accumulation of an amphipathic weak acid GC pro-drug into the intraliposome aqueous compartment, where it forms a GC-calcium precipitate. We demonstrate fabrication principles that derive from the physicochemical properties of the GC and the liposomal lipids, which play a crucial role in GC release rate and kinetics. These principles allow fabrication of formulations that exhibit either a fast, second-order (t1/2 ∼1 h), or a slow, zero-order release rate (t1/2 ∼ 50 h) kinetics. A high therapeutic efficacy was found in murine models of experimental autoimmune encephalomyelitis (EAE) and hematological malignancies

    Intracellular Trafficking Considerations in the Development of Natural Ligand-Drug Molecular Conjugates for Cancer

    Get PDF
    Overexpressed receptors, characteristic of many cancers, have been targeted by various researchers to achieve a more specific treatment for cancer. A common approach is to use the natural ligand for the overexpressed receptor as a cancer-targeting agent which can deliver a chemically or genetically conjugated toxic molecule. However, it has been found that the therapeutic efficacy of such ligand-drug molecular conjugates can be limited, since they naturally follow the intracellular trafficking pathways of the endogenous ligands. Therefore, a thorough understanding of the intracellular trafficking properties of these ligands can lead to novel design criteria for engineering ligands to be more effective drug carriers. This review presents a few commonly used ligand/receptor systems where intracellular trafficking considerations can potentially improve the therapeutic efficacy of the ligand-drug molecular conjugates

    Cholesterol distribution in rat heart myocytes

    No full text

    Liposome co-encapsulation of anti-cancer agents for pharmacological optimization of nanomedicine-based combination chemotherapy

    No full text
    Aim: Co-encapsulation of anti-cancer agents in pegylated liposomes may provide an effective tool to maximize efficacy of combined drug therapy by taking advantage of the long circulation time, passive targeting, and reduced toxicity of liposome formulations.Methods: We have developed several liposome formulations of co-encapsulated drugs using various permutations of three active agents: doxorubicin (Dox), mitomycin-C lipidic prodrug (MLP), and alendronate (Ald). Dox and MLP are available in single drug liposomal formulations: pegylated liposomal Dox (PLD, Doxil®), clinically approved, and pegylated liposomal MLP (PL-MLP, Promitil®), in phase 1-2 clinical testing. We have previously shown that co-encapsulation of Dox and Ald in pegylated liposomes (PLAD) results in a formulation with valuable immuno-pharmacologic properties and superior antitumor properties over PLD in immunocompetent animal models. Building on the PLAD and PL-MLP platforms, we developed a new pegylated liposomal formulation of co-entrapped Dox and MLP (PLAD-MLP), with the former localized in the liposome water phase via remote loading with an ammonium alendronate and the latter passively loaded into the liposome lipid bilayer. An alternative formulation of co-entrapped MLP and Dox in which ammonium Ald was replaced with ammonium sulfate (PLD-MLP) was also tested for comparative purposes.Results: PLAD-MLP displays high loading efficiency of Dox and MLP nearing 100%, and a mean vesicle diameter of 110 nm. Cryo-transmission electron microscopy (cryo-TEM) of PLAD-MLP reveals round vesicles with an intra-vesicle Dox-alendronate precipitate. PLAD-MLP was tested in an in vitro MLP activation assay with the reducing agent dithiothreitol and found to be significantly less susceptible to thiolytic activation than PL-MLP. Alongside thiolytic activation of MLP, a significant fraction of encapsulated Dox was released from liposomes. PLAD-MLP is stable upon in vitro incubation in human plasma with nearly 100% drug retention. In mouse pharmacokinetic studies, PLAD-MLP extended MLP half-life in circulation when compared to that of MLP delivered as PL-MLP. In addition, the MLP levels in tissues were greater than those obtained with PL-MLP, indicating that PLAD-MLP slows down the cleavage of the prodrug MLP to MMC, thus resulting in a more sustained and prolonged exposure. The circulation half-life of Dox in PLAD-MLP was similar to the PLD Dox half-life. The pattern of tissue distribution was similar for the co-encapsulated drugs, although Dox levels were generally higher than those of MLP, as expected from cleavage of MLP to its active metabolite MMC. In mouse tumor models, the therapeutic activity of PLAD-MLP was superior to PL-MLP and PLD with a convenient safety dose window. The Ald-free formulation, PLD-MLP, displayed similar pharmacokinetic properties to PLAD-MLP, but its therapeutic activity was lower.Conclusion: PLAD-MLP is a novel multi-drug liposome formulation with attractive pharmacological properties and powerful antitumor activity and is a promising therapeutic tool for combination cancer chemotherapy
    corecore