119 research outputs found

    Location Determination of Optimal Emergency System for Hurricane Disaster Based on Mathematical Modeling

    Get PDF
    This article first introduces the current research status of space optical communication, and gives a brief overview of the development and application prospects of space optical communication, explaining its important research significance. Then, the working principle of ATP in space optical communication system is studied, the mathematical model of ATP control system is established according to the actual needs, and the ATP control system design of space optical communication is designed. By selecting appropriate motors and gyroscopes as the actuators and detection elements of the system, substituting the actual parameters for simulation analysis, and correcting and verifying the results, some useful results are obtained. The simulation results show the rationality and effectiveness of the ATP design scheme

    Proof of the deadlock-freeness of ALD routing algorithm

    Get PDF
    This is the appendix to the paper Load-Balanced Adaptive Routing for Torus Networks to provide a detailed, formal proof of the deadlock-freeness of the routing algorithm proposed in the paper. The paper is submitted to Electronics Letters, and the abstract of which is as follows: A new routing algorithm for torus interconnection networks to achieve high throughput on various traffic patterns, Adaptive Load-balanced routing with cycle Detection (ALD), is presented. Instead of the -channels scheme adopted in a few recently proposed algorithms of the same category, a cycle detection scheme is employed in ALD to handle deadlock, which leads to higher routing adaptability. Simulation results demonstrate that ALD achieves higher throughput than the recently proposed algorithms on both benign and adversarial traffic patterns

    PEJL: A path-enhanced joint learning approach for knowledge graph completion

    Get PDF
    Knowledge graphs (KGs) often suffer from incompleteness. Knowledge graph completion (KGC) is proposed to complete missing components in a KG. Most KGC methods focus on direct relations and fail to leverage rich semantic information in multi-hop paths. In contrast, path-based embedding methods can capture path information and utilize extra semantics to improve KGC. However, most path-based methods cannot take advantage of full multi-hop information and neglect to capture multiple semantic associations between single and multi-hop triples. To bridge the gap, we propose a novel path-enhanced joint learning approach called PEJL for KGC. Rather than learning multi-hop representations, PEJL can recover multi-hop embeddings by encoding full multi-hop components. Meanwhile, PEJL extends the definition of translation energy functions and generates new semantic representations for each multi-hop component, which is rarely considered in path-based methods. Specifically, we first use the path constraint resource allocation (PCRA) algorithm to extract multi-hop triples. Then we use an embedding recovering module consisting of a bidirectional gated recurrent unit (GRU) layer and a fully connected layer to obtain multi-hop embeddings. Next, we employ a KG modeling module to leverage various semantic information and model the whole knowledge graph based on translation methods. Finally, we define a joint learning approach to train our proposed PEJL. We evaluate our model on two KGC datasets: FB15K-237 and NELL-995. Experiments show the effectiveness and superiority of PEJL

    Temporal Artery Flow Response during the Last Minute of a Head Up Tilt Test, in Relation with Orthostatic Intolerance after a 60 Day Head-Down Bedrest

    Get PDF
    OBJECTIVE: Check if the Temporal flow response to Tilt could provide early hemodynamic pattern in the minutes preceding a syncope during the Tilt test performed after a 60-d head down bedrest (HDBR). METHOD: Twenty-one men divided into 3 groups [Control (Con), Resistive Vibration (RVE) and Chinese Herb (Herb)] underwent a 60 day HDBR. Pre and Post HDBR a 20 min Tilt identified Finishers (F) and Non Finishers (NF). Cerebral (MCA), Temporal (TEMP), Femoral (FEM) flow velocity, were measured by Doppler during the Tilt. Blood pressure (BP) was measured by arm cuff and cardiopress. RESULTS AND DISCUSSION: Four of the 21 subjects were NF at the post HDBR Tilt test (Con gr:2, RVE gr: 1, Herb gr: 1). At 1 min and 10 s before end of Tilt in NF gr, FEM flow decreased less and MCA decreased more at post HDBR Tilt compared to pre (p<0.05), while in the F gr they changed similarly as pre. In NF gr: TEMP flow decreased more at post HDBR Tilt compared to pre, but only at 10 s before the end of Tilt (P<0.05). During the last 10 s a negative TEMP diastolic component appeared which induced a drop in mean velocity until Tilt arrest. CONCLUSION: The sudden drop in TEMP flow with onset of a negative diastolic flow preceding the decrease in MCA flow confirm that the TEMP vascular resistance respond more directly than the cerebral one to the cardiac output redistribution and that this response occur several seconds before syncope

    Generalized linear model for interval mapping of quantitative trait loci

    Get PDF
    We developed a generalized linear model of QTL mapping for discrete traits in line crossing experiments. Parameter estimation was achieved using two different algorithms, a mixture model-based EM (expectation–maximization) algorithm and a GEE (generalized estimating equation) algorithm under a heterogeneous residual variance model. The methods were developed using ordinal data, binary data, binomial data and Poisson data as examples. Applications of the methods to simulated as well as real data are presented. The two different algorithms were compared in the data analyses. In most situations, the two algorithms were indistinguishable, but when large QTL are located in large marker intervals, the mixture model-based EM algorithm can fail to converge to the correct solutions. Both algorithms were coded in C++ and interfaced with SAS as a user-defined SAS procedure called PROC QTL

    Peripheral Arterial and Venous Response to Tilt Test after a 60-Day Bedrest with and without Countermeasures (ES-IBREP)

    Get PDF
    We quantified the impact of 60-day head-down bed rest (HDBR) with countermeasures on arterial and venous response to tilt. Methods: Twenty-one males: 7 control (Con), 7 resistive vibration exercise (RVE) and 7 Chinese herb (Herb) were assessed. Subjects were identified as finisher (F) or non-finishers (NF) at the post-HDBR 20-min tilt test. The cerebral (MCA), femoral (FEM) arterial flow velocity and leg vascular resistance (FRI), the portal vein section (PV), the flow redistribution ratios (MCA/FEM; MCA/PV), the tibial (Tib), gastrocnemius (Gast), and saphenous (Saph) vein sections were measured by echography and Doppler ultrasonography. Arterial and venous parameters were measured at 3-min pre-tilt in the supine position, and at 1 min before the end of the tilt. Results: At post-HDBR tilt, MCA decreased more compared with pre-HDBR tilt in the Con, RVE, and Herb groups, the MCA/FEM tended to decrease in the Con and Herb groups (not significant) but remained stable in the RVE gr. FRI dropped in the Con gr, but remained stable in the Herb gr and increased in the RVE gr. PV decreased less in the Con and Herb groups but remained unchanged in the RVE gr. MCA/PV decreased in the Con and Herb groups, but increased to a similar extent in the RVE gr. Gast section significantly increased more in the Con gr only, whereas Tib section increased more in the Con and Herb groups but not in the RVE gr. The percent change in Saph section was similar at pre- and post-HDBR tilt. Conclusion: In the Con gr, vasoconstriction was reduced in leg and splanchnic areas. RVE and Herb contributed to prevent the loss of vasoconstriction in both areas, but the effect of RVE was higher. RVE and Herb contributed to limit Gast distension whereas only RVE had a protective effect on the Tib

    Blind Direction-of-Arrival Estimation with Uniform Circular Array in Presence of Mutual Coupling

    No full text
    A blind direction-of-arrival (DOA) estimation algorithm based on the estimation of signal parameters via rotational invariance techniques (ESPRIT) is proposed for a uniform circular array (UCA) when strong electromagnetic mutual coupling is present. First, an updated UCA model with mutual coupling in a discrete Fourier transform (DFT) beam space is deduced, and the new manifold matrix is equal to the product of a centrosymmetric diagonal matrix and a Vandermonde-structure matrix. Then we carry out blind DOA estimation through a modified ESPRIT method, thus avoiding the need for spatial angular searching. In addition, two mutual coupling parameter estimation methods are presented after the DOAs have been estimated. Simulation results show that the new algorithm is reliable and effective especially for closely spaced signals
    corecore