53 research outputs found

    Generalized linear model for interval mapping of quantitative trait loci

    Get PDF
    We developed a generalized linear model of QTL mapping for discrete traits in line crossing experiments. Parameter estimation was achieved using two different algorithms, a mixture model-based EM (expectation–maximization) algorithm and a GEE (generalized estimating equation) algorithm under a heterogeneous residual variance model. The methods were developed using ordinal data, binary data, binomial data and Poisson data as examples. Applications of the methods to simulated as well as real data are presented. The two different algorithms were compared in the data analyses. In most situations, the two algorithms were indistinguishable, but when large QTL are located in large marker intervals, the mixture model-based EM algorithm can fail to converge to the correct solutions. Both algorithms were coded in C++ and interfaced with SAS as a user-defined SAS procedure called PROC QTL

    MACT: A Manageable Minimization Allocation System

    No full text
    Background. Minimization is a case allocation method for randomized controlled trials (RCT). Evidence suggests that the minimization method achieves balanced groups with respect to numbers and participant characteristics, and can incorporate more prognostic factors compared to other randomization methods. Although several automatic allocation systems exist (e.g., randoWeb, and MagMin), the minimization method is still difficult to implement, and RCTs seldom employ minimization. Therefore, we developed the minimization allocation controlled trials (MACT) system, a generic manageable minimization allocation system. System Outline. The MACT system implements minimization allocation by Web and email. It has a unified interface that manages trials, participants, and allocation. It simultaneously supports multitrials, multicenters, multigrouping, multiple prognostic factors, and multilevels. Methods. Unlike previous systems, MACT utilizes an optimized database that greatly improves manageability. Simulations and Results. MACT was assessed in a series of experiments and evaluations. Relative to simple randomization, minimization produces better balance among groups and similar unpredictability. Applications. MACT has been employed in two RCTs that lasted three years. During this period, MACT steadily and simultaneously satisfied the requirements of the trial. Conclusions. MACT is a manageable, easy-to-use case allocation system. Its outstanding features are attracting more RCTs to use the minimization allocation method

    Inter-sectoral CO

    No full text
    The transfer of carbon dioxide (CO2) implied in inter-sectoral trade is significantly affecting the process of reducing CO2 emissions in China. This phenomenon also affects Zhejiang Province, which has the top five GDP in China. In this study, a universal modeling system is developed to clarify CO2 emission reduction responsibilities and visualize relationships of each pair of transfers in Zhejiang Province. The system includes “three modules”, namely input-output module, CO2 emission factor module and ecological network module. The proposed modelling system is employed for sectors of Zhejiang province. Research results demonstrate that industry should assume more responsibility for emission reduction; the existing development models of various industries need to be further adjusted. Achievements of this research will provide a scientific reference and a strong basis for decision-makers to formulate reasonable emission reduction policies in Zhejiang Province

    Data from: Mapping quantitative trait loci using selected breeding populations: a segregation distortion approach

    No full text
    Quantitative trait locus (QTL) mapping is often conducted in line crossing experiments where progeny are derived randomly from the original crosses. The detected QTL from such experiments are rarely relevant to breeding populations because they are not detected from the breeding populations. We developed generalized linear model methods to perform QTL mapping in directionally selected populations using a segregation distortion approach. A selected population is often small and thus has low power for QTL detection. The segregation distortion approach actually takes advantage of the small populations because small selected populations often reflected strong selection and thus possess a high degree of segregation distortion. We also developed methods to combine results of several populations and results from different types of data analyses from the same populations. Such a combined analysis can boost statistical powers. Simulation studies showed that the new methods of QTL mapping in selected populations are powerful. We illustrated the methods using two selected rice populations and detected several QTL responsible to yield selection. The new methods can be applied not only to rice breeding programs but also to breeding programs of all crops

    Study on Characteristics and Control of Aerodynamic Noise of a High-Speed Centrifugal Air Compressor for Vehicle Fuel Cells

    No full text
    As the main noise source in the hydrogen fuel cell system, the noise level of the centrifugal air compressor greatly affects the comfort of the hydrogen fuel cell vehicle. For reducing the noise level of centrifugal air compressors, the noise characteristics and control of a high-speed two-stage compressor prototype are studied in this paper. Firstly, the near-field noise measurement, along with the independent component analysis, is carried out to identify the noise source of the developed compressor. Results showed that the “buzz-saw” noise at the rotating fundamental frequency and its low order harmonic frequency in the aerodynamic noise is prominent in the noise spectrum. Thus, the aerodynamic noise characteristics are predicted and analyzed using the CFD–BEM coupling aeroacoustic calculation model. Based on the analysis results, a noise control method coupling the structure optimization and perforated muffler is proposed. The results show that the sound pressure level of the air compressor at 1 m away from the surface is reduced by 4.1 dBA after the structural optimization. A perforated muffler applied in the pipe system of the air compressor can accomplish a reduction of 5.8 dBA in the sound pressure level of the air compressor by impeding the noise transmission on the path. With the coupled noise control methods above, the sound pressure level of the air compressor is reduced from 78.8 dBA to 68.9 dBA under the rated condition

    Layer-by-layer structured membranes of silk fibroin and polyethylenimine on electrospun silk fibroin nanofibers

    Full text link
    Self-assembled silk fibroin (SF)-polyethylenimine (PEI) multilayered films were fabricated on ethanol treated electrospun SF nanofibrous substrates via the electrostatic layer-by-layer (LBL) adsorption. The film coated membranes were characterized using scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectrophotometer (XPS). The SEM images showed that the multilayers of SF-PEI were formed on the surface of the ethanol treated SF nanofibres. The characteristics such as the fiber shape and porous structure were well maintained as the number of the coated SF-PEI bilayers was less than five. However, obvious adhesive substances and blocked pores were observed on the surface of the fibers as the number of bilayers of SF-PEI increased to six. Furthermore, the obvious core-shell structures were observed by TEM. The thickness of five SF-PEI bilayers was approximately 80nm. Additionally, the XPS results also revealed that the SF-PEI multilayer composite membranes formed. The adsorption mainly depended on a simple electrostatic interaction between the layers of SF and PEI. These SF-PEI multilayer assembled nanofibrous membranes could be a promising material for use as a sensor, gene delivery agent and scaffolds

    Removal of copper ions from aqueous solution by adsorption onto novel polyelectrolyte film-coated nanofibrous silk fibroin non-wovens

    Full text link
    In this approach, polyelectrolyte film-coated nanofibrous silk fibroin (SF) nonwovens were prepared from the alternate deposition of positively charged polyethylenimine (PEI) and negatively charged SF using electrostatic layer-by-layer (LBL) self-assembled technology. The composite membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectrometer. The SF-PEI multilayer-assembled nanofibers (less than five layers) were fine and uniform with the fiber diameter from 400 nm to 600 nm, and had very large surface area and high porosity (more than 70%). The amino groups of PEI were proved to be deposited onto SF nonwovens, which granted the coated nonwovens with potential applicability for copper ions adsorption. The PEI films coated SF substrate showed much higher copper ions adsorption capacity than that of ethanol treated SF nanofibers. Adding the number of PEI coated could enhance the Cu2+ adsorption capacity significantly. The maximum milligrams per gram of copper ions adsorbed reached 59.7 mg/g when the SF substrate was coated with 5 bilayers of SF-PEI. However, the copper ions adsorption capacity had no obvious change as the number of PEI continued to increase. These results suggest potential for PEL film-coated nanofibrous nonwovens as a new adsorbent for metal ions
    corecore