125 research outputs found

    Relaxation of a test particle in systems with long-range interactions: diffusion coefficient and dynamical friction

    Full text link
    We study the relaxation of a test particle immersed in a bath of field particles interacting via weak long-range forces. To order 1/N in the N+N\to +\infty limit, the velocity distribution of the test particle satisfies a Fokker-Planck equation whose form is related to the Landau and Lenard-Balescu equations in plasma physics. We provide explict expressions for the diffusion coefficient and friction force in the case where the velocity distribution of the field particles is isotropic. We consider (i) various dimensions of space d=3,2d=3,2 and 1 (ii) a discret spectrum of masses among the particles (iii) different distributions of the bath including the Maxwell distribution of statistical equilibrium (thermal bath) and the step function (water bag). Specific applications are given for self-gravitating systems in three dimensions, Coulombian systems in two dimensions and for the HMF model in one dimension

    The promotion of local wellbeing: A primer for policymakers

    Get PDF
    There is growing interest among policymakers in the promotion of wellbeing as an objective of public policy. In particular, local authorities have been given powers to undertake action to promote wellbeing in their area. Recent advances in the academic literature on wellbeing are giving rise to an increasingly detailed picture of the factors that determine people’s subjective wellbeing (how they think and feel about their lives). However, the concept of subjective wellbeing is poorly understood within local government and much of the evidence base is extremely recent. I therefore review the literature on the definition, measurement, and determinants of wellbeing, and discuss some of its implications for local public policy

    On the kinetic systems for simple reacting spheres : modeling and linearized equations

    Get PDF
    Series: Springer Proceedings in Mathematics & Statistics, Vol. 75In this work we present some results on the kinetic theory of chemically reacting gases, concerning the model of simple reacting spheres (SRS) for a gaseous mixture undergoing a chemical reaction of type A1 +A2 A3 +A4. Starting from the approach developed in paper [11], we provide properties of the SRS system needed in the mathematical and physical analysis of the model. Our main result in this proceedings provides basic properties of the SRS system linearized around the equilibrium, including the explicit representations of the kernels of the linearized SRS operators.Fundação para a Ciência e a Tecnologia (FCT), PEst-C/MAT/UI0013/2011, SFRH/BD/28795/200

    Agency, qualia and life: connecting mind and body biologically

    Get PDF
    Many believe that a suitably programmed computer could act for its own goals and experience feelings. I challenge this view and argue that agency, mental causation and qualia are all founded in the unique, homeostatic nature of living matter. The theory was formulated for coherence with the concept of an agent, neuroscientific data and laws of physics. By this method, I infer that a successful action is homeostatic for its agent and can be caused by a feeling - which does not motivate as a force, but as a control signal. From brain research and the locality principle of physics, I surmise that qualia are a fundamental, biological form of energy generated in specialized neurons. Subjectivity is explained as thermodynamically necessary on the supposition that, by converting action potentials to feelings, the neural cells avert damage from the electrochemical pulses. In exchange for this entropic benefit, phenomenal energy is spent as and where it is produced - which precludes the objective observation of qualia

    A unified approach for the solution of the Fokker-Planck equation

    Full text link
    This paper explores the use of a discrete singular convolution algorithm as a unified approach for numerical integration of the Fokker-Planck equation. The unified features of the discrete singular convolution algorithm are discussed. It is demonstrated that different implementations of the present algorithm, such as global, local, Galerkin, collocation, and finite difference, can be deduced from a single starting point. Three benchmark stochastic systems, the repulsive Wong process, the Black-Scholes equation and a genuine nonlinear model, are employed to illustrate the robustness and to test accuracy of the present approach for the solution of the Fokker-Planck equation via a time-dependent method. An additional example, the incompressible Euler equation, is used to further validate the present approach for more difficult problems. Numerical results indicate that the present unified approach is robust and accurate for solving the Fokker-Planck equation.Comment: 19 page

    At What Stage of Neural Processing Does Cocaine Act to Boost Pursuit of Rewards?

    Get PDF
    Dopamine-containing neurons have been implicated in reward and decision making. One element of the supporting evidence is that cocaine, like other drugs that increase dopaminergic neurotransmission, powerfully potentiates reward seeking. We analyze this phenomenon from a novel perspective, introducing a new conceptual framework and new methodology for determining the stage(s) of neural processing at which drugs, lesions and physiological manipulations act to influence reward-seeking behavior. Cocaine strongly boosts the proclivity of rats to work for rewarding electrical brain stimulation. We show that the conventional conceptual framework and methods do not distinguish between three conflicting accounts of how the drug produces this effect: increased sensitivity of brain reward circuitry, increased gain, or decreased subjective reward costs. Sensitivity determines the stimulation strength required to produce a reward of a given intensity (a measure analogous to the KM of an enzyme) whereas gain determines the maximum intensity attainable (a measure analogous to the vmax of an enzyme-catalyzed reaction). To distinguish sensitivity changes from the other determinants, we measured and modeled reward seeking as a function of both stimulation strength and opportunity cost. The principal effect of cocaine was a two-fourfold increase in willingness to pay for the electrical reward, an effect consistent with increased gain or decreased subjective cost. This finding challenges the long-standing view that cocaine increases the sensitivity of brain reward circuitry. We discuss the implications of the results and the analytic approach for theories of how dopaminergic neurons and other diffuse modulatory brain systems contribute to reward pursuit, and we explore the implications of the conceptual framework for the study of natural rewards, drug reward, and mood

    On modified simple reacting spheres kinetic model for chemically reactive gases

    Get PDF
    Versão dos autores para esta publicação.We consider the modiffed simple reacting spheres (MSRS) kinetic model that, in addition to the conservation of energy and momentum, also preserves the angular momentum in the collisional processes. In contrast to the line-of-center models or chemical reactive models considered in [1], in the MSRS (SRS) kinetic models, the microscopic reversibility (detailed balance) can be easily shown to be satisfied, and thus all mathematical aspects of the model can be fully justi ed. In the MSRS model, the molecules behave as if they were single mass points with two internal states. Collisions may alter the internal states of the molecules, and this occurs when the kinetic energy associated with the reactive motion exceeds the activation energy. Reactive and non-reactive collision events are considered to be hard spheres-like. We consider a four component mixture A, B, A*, B*, in which the chemical reactions are of the type A + B = A* + B*, with A* and B* being distinct species from A and B. We provide fundamental physical and mathematical properties of the MSRS model, concerning the consistency of the model, the entropy inequality for the reactive system, the characterization of the equilibrium solutions, the macroscopic setting of the model and the spatially homogeneous evolution. Moreover, we show that the MSRS kinetic model reduces to the previously considered SRS model (e.g., [2], [3]) if the reduced masses of the reacting pairs are the same before and after collisions, and state in the Appendix the more important properties of the SRS system.Fundação para a Ciência e a Tecnologi

    Recurrent, Robust and Scalable Patterns Underlie Human Approach and Avoidance

    Get PDF
    BACKGROUND. Approach and avoidance behavior provide a means for assessing the rewarding or aversive value of stimuli, and can be quantified by a keypress procedure whereby subjects work to increase (approach), decrease (avoid), or do nothing about time of exposure to a rewarding/aversive stimulus. To investigate whether approach/avoidance behavior might be governed by quantitative principles that meet engineering criteria for lawfulness and that encode known features of reward/aversion function, we evaluated whether keypress responses toward pictures with potential motivational value produced any regular patterns, such as a trade-off between approach and avoidance, or recurrent lawful patterns as observed with prospect theory. METHODOLOGY/PRINCIPAL FINDINGS. Three sets of experiments employed this task with beautiful face images, a standardized set of affective photographs, and pictures of food during controlled states of hunger and satiety. An iterative modeling approach to data identified multiple law-like patterns, based on variables grounded in the individual. These patterns were consistent across stimulus types, robust to noise, describable by a simple power law, and scalable between individuals and groups. Patterns included: (i) a preference trade-off counterbalancing approach and avoidance, (ii) a value function linking preference intensity to uncertainty about preference, and (iii) a saturation function linking preference intensity to its standard deviation, thereby setting limits to both. CONCLUSIONS/SIGNIFICANCE. These law-like patterns were compatible with critical features of prospect theory, the matching law, and alliesthesia. Furthermore, they appeared consistent with both mean-variance and expected utility approaches to the assessment of risk. Ordering of responses across categories of stimuli demonstrated three properties thought to be relevant for preference-based choice, suggesting these patterns might be grouped together as a relative preference theory. Since variables in these patterns have been associated with reward circuitry structure and function, they may provide a method for quantitative phenotyping of normative and pathological function (e.g., psychiatric illness).National Institute on Drug Abuse (14118, 026002, 026104, DABK39-03-0098, DABK39-03-C-0098); The MGH Phenotype Genotype Project in Addiction and Mood Disorder from the Office of National Drug Control Policy - Counterdrug Technology Assessment Center; MGH Department of Radiology; the National Center for Research Resources (P41RR14075); National Institute of Neurological Disorders and Stroke (34189, 05236
    corecore