47 research outputs found

    Dissociation, enrichment, and the in vitro formation of gonocyte colonies from cryopreserved neonatal bovine testicular tissues

    Get PDF
    Gonocytes play an important role in early development of spermatogonial stem cells and fertility preservation to acquire more high quality gonocytes in vitro for further germ cell-related research and applications, it is necessarily needed to enrich and in vitro propagate gonocytes from cryopreserved bovine testicular tissues. This study aimed to investigate the isolation, enrichment, and colony formation of gonocytes in vitro for germ cell expansion from cryopreserved neonatal bovine testicular tissues. The effects of several different in vitro culture conditions, including seeding density, temperature, serum replacement and extracellular matrices were investigated for the maintenance, proliferation and formation of gonocyte colonies in vitro. Frozen/thawed two-week-old neonatal bovine testicular tissues were digested and gonocytes were enriched using a Percoll density gradient. Cell viability was accessed by trypan blue staining and cell apoptosis was evaluated by TUNEL assays. Gonocytes were identified and confirmed by immunofluorescence with the PGP9.5 germ cell marker and the OCT4 pluripotency marker while Sertoli cells were stained with vimentin. We found that neonatal bovine gonocytes were efficiently enriched by a 30%–40% Percoll density gradient (p < 0.05). No significant differences were detected between neonatal bovine testicular cells cultured at 34 °C or 37 °C. The formation of gonocyte colonies was observed in culture medium supplemented with knockout serum replacement (KSR), but not fetal bovine serum (FBS), at a seeding density higher than 5.0 × 104 cells/well. A greater number of gonocyte colonies were observed in culture plates coated with laminin (38.00 ± 6.24/well) and Matrigel (38.67 ± 3.78/well) when compared to plates coated with collagen IV and fibronectin (p < 0.05). In conclusion, bovine neonatal gonocytes were able to be efficiently isolated, enriched and maintained in gonocyte colonies in vitro; the development of this protocol provides vital information for the clinical translation of this technology and the future restoration of human fertility

    Effect of activation energy on detonation re-initiation behaviors in hydrogen-air mixtures

    Get PDF
    Two-dimensional simulations of a detonation propagating over a semi-cylinder in a channel filled with a stoichiometric hydrogen-air mixture are presented. A full set of Navier-Stokes equations is solved using a third-order WENO algorithm with HLLC flux, coupled with a calibrated, single-step chemical diffusive model (CDM). Simulation results using five different effective activation energies E=\mathcal{E}= 4, 6, 10, 12 and 14 are presented featuring four distinct detonation attenuation regimes, including unattenuated detonation transmission (E=\mathcal{E}= 4), critical detonation re-initiation (E=\mathcal{E}= 6, and 10), cycled detonation re-initiation (E=\mathcal{E}= 12), and complete quenching (E=\mathcal{E}= 14). The degree of cell irregularity and the intensity of triple points are found positively correlated with the effective activation energy. With a low effective activation energy (E=\mathcal{E}= 4), the CDM captures a regular cellular pattern, and the cellular structure remains intact as it propagates over the obstacle. With intermediate effective activation energies (E=\mathcal{E}= 6, and 10), the detonation cell size increases and the cell structures become less regular with emerging multi-level cell structures. Here, a critical detonation re-initiation event is captured, where a strong transverse detonation wave forms following the Mach shock reflection, and eventually leads to a steady detonation propagation. At high effective activation energy (E=\mathcal{E}= 12), the initial transverse detonations fail to produce a self-sustained detonation wave and multiple ignition and quenching events are found before the final establishment of the detonation wave

    Active Fragment of Veronica ciliata

    Get PDF
    Excessive amounts of reactive oxygen species (ROS) in the body are a key factor in the development of hepatopathies such as hepatitis. The aim of this study was to assess the antioxidation effect in vitro and hepatoprotective activity of the active fragment of Veronica ciliata Fisch. (VCAF). Antioxidant assays (DPPH, superoxide, and hydroxyl radicals scavenging) were conducted, and hepatoprotective effects through the application of tert-butyl hydroperoxide- (t-BHP-) induced oxidative stress injury in HepG2 cells were evaluated. VCAF had high phenolic and flavonoid contents and strong antioxidant activity. From the perspective of hepatoprotection, VCAF exhibited a significant protective effect on t-BHP-induced HepG2 cell injury, as indicated by reductions in cytotoxicity and the levels of ROS, 8-hydroxydeoxyguanosine (8-OHdG), and protein carbonyls. Further study demonstrated that VCAF attenuated the apoptosis of t-BHP-treated HepG2 cells by suppressing the activation of caspase-3 and caspase-8. Moreover, it significantly decreased the levels of ALT and AST, increased the activities of acetyl cholinesterase (AChE), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT), and increased total antioxidative capability (T-AOC). Collectively, we concluded that VCAF may be a considerable candidate for protecting against liver injury owing to its excellent antioxidant and antiapoptosis properties

    Clinical Study Efficacy of Combined Laparoscopic and Hysteroscopic Repair of Post-Cesarean Section Uterine Diverticulum: A Retrospective Analysis

    Get PDF
    Background. Diverticulum, one of the long-term sequelae of cesarean section, can cause abnormal uterine bleeding and increase the risk of uterine scar rupture. In this study, we aimed to evaluate the efficacy of combined laparoscopic and hysteroscopic repair, a newly occurring method, treating post-cesarean section uterine scar diverticulum. Methods. Data relating to 40 patients with post-cesarean section uterine diverticulum who underwent combined laparoscopic and hysteroscopic repair were retrospectively analyzed. Preoperative clinical manifestations, size of uterine defects, thickness of the lower uterine segment (LUS), and duration of menstruation were compared with follow-up findings at 1, 3, and 6 months after surgery. Results. The average preoperative length and width of uterine diverticula and thickness of the lower uterine segment were recorded and analyzed. The average durations of menstruations at 1, 3, and 6 months after surgery were significantly shorter than the preoperative one ( &lt; 0.05), respectively. At 6 months after surgery, the overall success improvement rate of surgery was 90% (36/40). Three patients (3/40 = 7.5%) developed partial improvement, and 1/40 (2.5%) was lost to follow-up. Conclusions. Our findings showed that combined treatment with laparoscopy and hysteroscopy was an effective method for the repair of post-cesarean section uterine diverticulum

    RCC:NSFC's new review mechanism: Its missions and challenges

    No full text

    RCC:NSFC's new review mechanism: Its missions and challenges

    No full text

    Effects of Starch on Properties of Alumina-based Ceramic Cores

    No full text
    In order to improve the poor leachability of alumina-based ceramic cores, different amount of starch was added to the specimens as pore former. Alumina-based ceramic cores were prepared by hot injection technology using corundum powder as base material, paraffin wax and beeswax as plasticizer, silica powder and magnesium oxide powder as mineralizing agent, wherein the parameters of the hot injection process were as follows:temperature of the slurry was 90℃, hot injection pressure was 0.5 MPa and holding time was 25 s. The effects of starch content on the properties of alumina-based ceramic cores were studied and discussed. The results indicate that during sintering period, the loss of starch in the specimens makes porosity of the alumina-based ceramic cores increase. When starch content increases, the room-temperature flexural strength of the ceramic cores reduces and the apparent porosity increases; the volatile solvent increases and the bulk density decreases. After being sintered at 1560℃ for 2.5 h, room-temperature flexural strength of the alumina-based ceramic cores with starch content of 8%(mass fraction) is 24.8 MPa, apparent porosity is 47.98% when the volatile solvent is 1.92 g/h and bulk density is 1.88 g/cm3, the complex properties are optimal
    corecore