16 research outputs found

    Z-Scheme Photocatalyst Constructed by Natural Attapulgite and Upconversion Rare Earth Materials for Desulfurization

    Get PDF
    The Er3+:CeO2/ATP (attapulgite) nanocomposites were prepared by a facile precipitation method. The samples were characterized by various measurements. XRD and TEM showed that Er3+:CeO2 nanoparticles were well-crystallized and loaded on the surface of ATP. The visible light was converted into ultraviolet light by Er3+:CeO2 as evidenced by upconversion photoluminance (PL) analysis. The mass ratio of Er3+:CeO2 to ATP on the desulfurization efficiency was investigated. Results showed that the desulfurization rate reached 87% under 4 h visible light irradiation when the mass ratio was 4:10. The mechanism was put forward as follows. Er3+:CeO2 and ATP formed Z-scheme heterostructure intermediated by oxygen vacancy, leading to the enhanced separation of photogenerated charges and preservation of high oxidation-reduction potential, both of which favored for the generation of radicals to oxidize sulfur species

    Expression and regulation of long noncoding RNAs during the osteogenic differentiation of periodontal ligament stem cells in the inflammatory microenvironment

    No full text
    Abstract Although long noncoding RNAs (lncRNAs) have been emerging as critical regulators in various tissues and biological processes, little is known about their expression and regulation during the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) in inflammatory microenvironment. In this study, we have identified 63 lncRNAs that are not annotated in previous database. These novel lncRNAs were not randomly located in the genome but preferentially located near protein-coding genes related to particular functions and diseases, such as stem cell maintenance and differentiation, development disorders and inflammatory diseases. Moreover, we have identified 650 differentially expressed lncRNAs among different subsets of PDLSCs. Pathway enrichment analysis for neighboring protein-coding genes of these differentially expressed lncRNAs revealed stem cell differentiation related functions. Many of these differentially expressed lncRNAs function as competing endogenous RNAs that regulate protein-coding transcripts through competing shared miRNAs
    corecore