1,148 research outputs found

    Modeling interacting dynamic networks: I. Preferred degree networks and their characteristics

    Get PDF
    We study a simple model of dynamic networks, characterized by a set preferred degree, κ\kappa. Each node with degree kk attempts to maintain its κ\kappa and will add (cut) a link with probability w(k;κ)w(k;\kappa) (1w(k;κ)1-w(k;\kappa)). As a starting point, we consider a homogeneous population, where each node has the same κ\kappa, and examine several forms of w(k;κ)w(k;\kappa), inspired by Fermi-Dirac functions. Using Monte Carlo simulations, we find the degree distribution in steady state. In contrast to the well-known Erd\H{o}s-R\'{e}nyi network, our degree distribution is not a Poisson distribution; yet its behavior can be understood by an approximate theory. Next, we introduce a second preferred degree network and couple it to the first by establishing a controllable fraction of inter-group links. For this model, we find both understandable and puzzling features. Generalizing the prediction for the homogeneous population, we are able to explain the total degree distributions well, but not the intra- or inter-group degree distributions. When monitoring the total number of inter-group links, XX, we find very surprising behavior. XX explores almost the full range between its maximum and minimum allowed values, resulting in a flat steady-state distribution, reminiscent of a simple random walk confined between two walls. Both simulation results and analytic approaches will be discussed.Comment: Accepted by JSTA

    Epidemic spreading on preferred degree adaptive networks

    Get PDF
    We study the standard SIS model of epidemic spreading on networks where individuals have a fluctuating number of connections around a preferred degree κ\kappa . Using very simple rules for forming such preferred degree networks, we find some unusual statistical properties not found in familiar Erd\H{o}s-R\'{e}nyi or scale free networks. By letting κ\kappa depend on the fraction of infected individuals, we model the behavioral changes in response to how the extent of the epidemic is perceived. In our models, the behavioral adaptations can be either `blind' or `selective' -- depending on whether a node adapts by cutting or adding links to randomly chosen partners or selectively, based on the state of the partner. For a frozen preferred network, we find that the infection threshold follows the heterogeneous mean field result λc/μ=/\lambda_{c}/\mu =/ and the phase diagram matches the predictions of the annealed adjacency matrix (AAM) approach. With `blind' adaptations, although the epidemic threshold remains unchanged, the infection level is substantially affected, depending on the details of the adaptation. The `selective' adaptive SIS models are most interesting. Both the threshold and the level of infection changes, controlled not only by how the adaptations are implemented but also how often the nodes cut/add links (compared to the time scales of the epidemic spreading). A simple mean field theory is presented for the selective adaptations which capture the qualitative and some of the quantitative features of the infection phase diagram.Comment: 21 pages, 7 figure

    Effects of T-tabs and large deflections in DCB specimen tests

    Get PDF
    A simple strength of materials analysis was developed for a double-cantilever beam (DCB) specimen to account for geometric nonlinearity effects due to large deflections and T-tabs. A new DCB data analysis procedure was developed to include the effects of these nonlinearities. The results of the analysis were evaluated by DCB tests performed for materials having a wide range of toughnesses. The materials used in the present study were T300/5208, IM7/8551-7, and AS4/PEEK. Based on the present analysis, for a typical deflection/crack length ratio of 0.3 (for AS4/PEEK), T-tabs and large deflections cause a 15 percent and 3 percent error, respectively, in the computer Mode 1 strain energy release rate. Design guidelines for DCB specimen thickness and T-tab height were also developed in order to keep errors due to these nonlinearities within 2 percent. Based on the test results, for both hinged and tabbed specimens, the effects of large deflection on the Mode 1 fracture toughness (G sub Ic) were almost negligible (less than 1 percent) in the case of T300/5208 and IM7/8551-7; however, AS4/PEEK showed a 2 to 3 percent effect. The effects of T-tabs G sub Ic were more significant for all the materials with T300/5208 showing a 5 percent error, IM7/8551-7 a 15 percent error, and, AS4/PEEK a 20 percent error

    Oxidative stress induced by administration of the neuroleptic drug haloperidol is attenuated by higher doses of haloperidol

    Get PDF
    The effect of haloperidol administration on lipid peroxidation and glutathione/protein thiol homeostasis in the brain was examined 4 h following subcutaneous administration of a single dose of haloperidol; 1.0, 1.5, 2.0 or 2.5 mg/kg b.wt. Glutathione (GSH) levels decreased significantly in cortex, striatum and midbrain after haloperidol administration. Maximal decreases of GSH was observed in the striatum. The depleted GSH was recoverable as protein glutathione mixed disulfide (Pr-SSG) with concomitant loss of protein thiols (Pr-SH) in all the regions of the brain examined. Administration of 1.5 mg/kg b.wt of haloperidol resulted in significant depletion of GSH in striatum and midbrain as compared to that after administration of the lower dose of 1.0 mg/kg b.wt. of haloperidol. However, administration of higher doses of haloperidol (2.0 and 2.5 mg/kg b.wt.) did not result in greater depletion of GSH; the GSH levels were not significantly different from that observed following the administration of 1.5 mg/kg b.wt. of haloperidol. However, Pr-SSG levels increased dose-dependently following haloperidol administration. The total GSH recovered as sum of GSH and Pr-SSG was significantly higher than controls in striatum and midbrain following administration of higher doses of haloperidol, namely, 2.0 and 2.5 mg/kg b.wt. The depleted GSH was not recoverable as glutathione disulfide (GSSG), GSSG levels were not significantly different from controls 4 h after administration of 1.5 mg/kg b.wt. of haloperidol. The levels of malondialdehyde (indicative of lipid peroxidation) increased significantly as compared to control levels (280-220%) following administration of 1.0 and 1.5 mg/kg b.wt. of haloperidol. Thereafter, the malondialdehyde levels in brain regions decreased and were only (186-150%) of control levels after administration of 2.0 and 2.5 mg/kg b.wt. of haloperidol, respectively. The present study demonstrates that administration of low doses of haloperidol results in depletion of GSH and increased levels of malondialdehyde. However, administration of higher doses of haloperidol results in attenuation of peroxidative damage with concomitant increase in the total GSH recovered as sum of free GSH and GSH bound to protein thiols (Pr-SSG)

    Artificial Neural Network Simulation of Ground Water Levels in Uplands of a Coastal Tropical Riparian

    Get PDF
    Wetlands play an important role in the ecological balance of the coastal region. Understanding groundwater level behaviour in uplands is important for the management and the development of coastal tropical riparian wetland. Artificial Neural Networks has proved to be robust techniques in modeling and prediction of hydrological processes. This paper presents the application of ANNs to model groundwater levels in uplands around a wetland environment. Weekly hydro meteorological observations have been used as an input to model groundwater fluctuation observed in sevel open wells in the region. A comparison of different training algorithms has also been carried out. The results obtained show that the use of Artificial Neural Networks in modeling the groundwater levels was successful. With Root Mean Square Error values in the range of 0.09 to 0.16, the study also reasserts that the same training algorithm need not provide the best results for different condition

    Phase shifting transformer to reduce power congestions and to redistribute power in interconnected systems

    Get PDF
    The increased penetration of wind and solar power, as well as the liberalized electricity market, makes the power system network interconnected and complex. As the power demand is increasing daily, the complexity of operating large power systems is also increasing. Congestion in the transmission network may become more common than previously, making power flow management a problem that becomes increasingly important. Unexpected power flows (also known as loop flows) are becoming a bigger issue in today's linked power networks. These flows have a detrimental impact on the safe functioning of integrated power networks, which hinders their ability to conduct cross-border trade. Phase shifting transformers (PSTs) allow real power flow to be controlled by changing the phase shift across the device. This study deals with two interconnected parallel power system networks and the power flow controlled through a PST in between. The simulation results emphasize the importance of the PST in facilitating the transfer of energy throughout the regional transmission interconnection

    Fluid movement in a channel of varying gap with permeable walls covered by porous media

    Get PDF
    Blood flow in arteries idealized into a channel of varying gap bounded by porous layer is studied. Analytical solutions are obtained using Beavers and Joseph slip condition by three approximate methods depending upon the geometrical configuration. The general solutions are applied to a particular problem of smooth constriction idealized into an artery with stenosis. The resistance of the porous layer to the flow in the channel and the shear stress at the nominal surface are discussed in detail. It is shown that for a given porous layer, depending on the value of the porous parameter ασ0, this may lead to an increase or decrease in the resistance and the shear stress may be used in evaluating the performance of various prosthetic devices which ultimately may be implanted in the living system

    Low glutathione levels in brain regions of aged rats

    Get PDF
    Glutathione (GSH) was measured in 6 regions of brain and liver of young adult, middle-aged and aged rats. GSH levels were significantly lower in cortex, cerebellum, striatum, thalamus and hippocampus of aged rats, while no changes were observed in liver as compared to young adult rats. On the other hand, lipid peroxidation as measured by thiobarbituric acid-reactive products increased significantly in all the regions of brain examined and in the liver of aged rats. Since GSH plays an important role as a cellular protectant against oxygen radical-mediated injury, decreased levels of GSH in aged rat brain are indicative of the vulnerability of the aged cerebral tissue to oxidative injury
    corecore