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Abstract-Blood flow in arteries idealized into a channel of varying gap bounded by porous layer 
is studied. Analytical solutions are obtained using Beavers and Joseph slip condition by three 
approximate methods depending upon the geometrical configuration. The general solutions are 
applied to a particular problem of smooth constriction idealized into an artery with stenosis. The 
resistance of the porous layer to the tlow in the channel and the shear stress at the nominal surface 
are discussed in detail. It is shown that for a given porous layer, depending on the value of the 
porous parameter aa,,, this may lead to an increase or decrease in the resistance and the shear 
stress may be used in evaluating the performance of various prosthetic devices which ultimately 
may be implanted in the living system. 

1. INTRODUCTION 

FLUID MOVEMENT in a channel of varying gap with permeable walls covered by a layer 
of porous material is discussed. The motivation of this investigation comes from the 
study of abnormal flow in the arterial system caused by the presence of occlusion or 
stenosis. At various locations in the arterial system, stenosis may develop (Young [l]) 
due to abnormal intravascular growth. It may also be due to the abnormal accumulation 
of fluid in the tissue bounding the artery. Arteries may also be narrowed by the 
development of atherosclerotic plaques which are closely connected with the blood flow 
through the artery bounded by a thin layer of tissue, idealized into a porous medium, 
which separates the blood flow from the flow of other physiological fluids (hereafter called 
PF). The stenosis developed in the artery causing the abnormal flow is an important 
factor in the development and progression of arterial diseases. Therefore, the study of 
movement and accumulation of PF in the tissue and their effect on blood flow in the 
artery is an important problem because the flow characteristics in the vicinity of the 
resulting protuberance may significantly be altered. Therefore, the results of the present 
study throw light on the understanding of the important flow characteristics in the arterial 
system, namely, the pressure, shear stress and possible changes in them. These in turn 
are related, respectively, to the physiologically important problems involving 

(i) increase in resistance to the blood flow, 
(ii) possible damages to the red and endothelial cells due to the existence of high shear 

zones, and 
(iii) possible transition from a laminar to turbulent flow inside the blood vessel 

creating high intensity shear zones unfavourable to the blood flow and arterial wall. 

The flow in a channel of varying gap bounded by rigid walls has been investigated by 
many authors (see Langlois [2], Young [l], Lee and Fung [3], Chow and Soda [4], 
Chandrasekhara and Rudraiah [5]). The results obtained from these analyses using rigid 
boundaries are not of much use in understanding the characteristics of flow in arteries, 
because they are bounded by tissues which are idealized into a porous medium where 
one has to use a slip condition at the bounding surface similar to the one postulated by 
Beavers and Joseph [6] (hereafter called BJ condition). Therefore, in this study we 
consider a two dimensional channel of varying gap bounded on both sides by a porous 
layer as shown in Fig. 1. We shall take the blood space as the channel and the tissue 
space as the porous layer. The blood flow in the channel is governed by the Navier- 
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y= h(x) 

y=-h(x) 

Fig. I. Physical model. 

Stokes equations and that in the porous layer is governed by the Darcy law with the BJ 
condition at the surface of the porous layer. In reality, direct numerical integration of 
these equations would be the best way to understand all the characteristics of the flow, if 
it is possible. However, there are many difficulties, for example, in approximating the 
irregular wall shape bounding the porous material while applying numerical methods. 
Therefore, in the present analysis we solve the system of equations analytically using the 
BJ slip condition with the object of understanding the physics of the problem with 
minimum mathematics. For this, we assume that the thickness of the porous layer is 
much larger than the width of the flow in the channel so that we can directly use the BJ 
condition at the bounding surface of the channel. To obtain analytical solutions using 
this BJ condition three approximate methods are developed for the three different 
configurations. In the first method, wall slope is assumed to be negligible and the results 
obtained are similar to those of Rudraiah et al. [7]. In the second method wall curvature 
is assumed to be negligible and the analysis is carried out by approximating the channel 
to that of a divergent wedge bounded by a porous layer with a source at the vertex. In 
the third method, the results of the second method are expanded in power series in terms 
of the wall slope and the results are applied to the problem of flow in a channel with 
constriction which is idealized into an artery with stenosis. It is shown that the resistance 
of the wall to the flow and the shear stress at the wall are greatly affected by the porous 
parameter C&Q, where (Y is the slip parameter and a0 = h/,/k, k is the permeability of 
the tissues and h is the width of flow in the channel. For a given porous layer, depending 
on the value of Crao, this may lead to an increase or decrease in the resistance and shear 
stress. This information may be useful in evaluating the performance of various prosthetic 
devices that may ultimately be implanted in vivo (i.e. the flow of PF in their natural 
habit). We note that the assumption-the thickness of the porous layer is large compared 
to the thickness of the fluid in the channel-made in this paper to use the BJ condition 
may not be valid directly to the biological process explained above. Because, in reality 
the thickness of the interstitial space idealized into a porous medium is much smaller (of 
order 1 pm) than the thickness of the blood channel (usually varies in the range O-7 pm). 
In that case the BJ condition cannot be used directly because it is independent of the 
thickness of the porous layer and ignores the variation of velocity in the porous layer. 
Work is in progress to include the finite thickness of the porous layer by modifying the 
BJ condition (Rudraiah [8]) by incorporating the variation of velocity in the porous layer. 
The results of the present analyses, however, are useful to solve this more general 
complicated problem of flow in a channel of varying gap bounded by this porous layer. 

2. FORMULATION OF THE PROBLEM 

The fluid flowing in the channel is assumed to be steady, homogeneous, incompressible 
and Newtonian. The coordinate system is chosen in such a way that the channel lies in 
the x-y plane (Fig. 1) with x-axis coinciding with the centre line of the channel and the 
y axis perpendicular to the x-z plane. It is further assumed that the channel has symmetry 
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about the x-axis. It is important to note that in reality complex three-dimensional flow 
patterns develop near the stenosis and blood behaves as a non-Newtonian fluid which 
are virtually impossible to analyse in full generality. Blood, a suspension in the artery, 
behaves as a Newtonian fluid at large shear rates and in some instances, the stenosis is 
known to be more “collar like” (Young [ 11) with some degree of axial symmetry. 
Therefore, the assumptions of Newtonian fluid and axial symmetry made in this study 
are reasonably valid. However, the porous layer is assumed to be homogeneous, isotropic 
and densely packed so that the usual Darcy law is valid. The nominal surface (see Beavers 
and Joseph [6]) bounding the channel on either side is assumed to be represented by the 
curves 

y = ah(x) (2.1) 

where h(x) is continuous and positive for all x. The flow in the channel is governed by 
the Navier-Stokes equation and that in the porous layer is governed by Darcy law and 
the flow is coupled through BJ condition. 

The equations of motion, neglecting inertia effects in the channel are (see Fig. 1) 

and those in the porous layer are governed by Darcy velocity 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

where V2 = 8/8x2 + a’/ay’, u and u are the velocity components in the x and y directions 
p is the pressure, p is the viscosity. 

These equations are solved using the boundary conditions 

at 

at 

y = h(x), 

Y = -h(x), 

0 = cQy, Q,?, 

(2.6) 

(2.7) 

(2.8) 

s +w 
udy=m (2.9) 

-h(x) 

where m is the net flux through the channel, us, uE, are the slip velocities, k is the 
permeability of the porous material and (Y is the dimensionless constant called slip 
parameter. The conditions (2.6) and (2.7) are the BJ conditions. 

3. SOLUTIONS OF THE PROBLEM 

To find the solution of the problem three approximate methods depending upon the 
three different physical situations are developed and these are discussed in this section. 

3.1. First approximation: Wall slope everywhere negligible 
If the wall slope h’(x) is everywhere small compared to unity, it is reasonable to 

assume that at each value of x, the components of velocity and pressure gradient are 
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approximately equal to those obtained in the case of uniform channel flow. This 
approximation leads to the velocity distribution given by Rudraiah et al. [7] with a 
pressure gradient parallel to the axis of the channel. Under these approximations the 
basic equations are: 

i ap a224 -- =- 
pax ay2' (3.1) 

ap 0 -= 9 ay 
v = 0. 

Eliminating p from these equations we get 

d3u -= 
dy3 

0. 

Solving (3.4) using the boundary conditions (2.6)-(2.9) we get 

U=;+$[m3-+2;f1](h2-3y2) (3.5) 

where 

IyI _ 2h3 3ii + a(3 + (Yu) -- 
3 a$ 

The expression for the pressure is 

p_ = 3a s x QhQI - m) dK 

P T c (3 + Ga)h3 

(3.2) 

(3.3) 

(3.4) 

(3.6) 

(3.7) 

where c is a constant of integration. Equations (3.5) and (3.7) in the limit of u - co 
tends to 

(3.8) 

lap 3m --=--- 
pax 2h3 (3.9) 

which are the usual solutions for a channel flow bounded by rigid impermeable walls. 
Equations (3.3) and (3.5) satisfy the boundary conditions exactly. The components of 

velocity given by (3.3) and (3.5) are the possible components if and only if 

Ih’Cdl e 1, 

Ih(x)h’@)l @ 1, 

Ih2(x)h’(x)l 4 1. (3.10) 

The conditions (3.10) imply that solutions (3.5)-(3.7) are valid only when the wall slope 
is small. 

3.2. Second approximation: Wall curvature everywhere negligible 
The restriction made above, viz. that the wall slope is negligible, (i.e. h’(x) $ 1) can 

be relaxed by assuming the flow locally to be as if h(x) were a linear function of x. 
Depending on the sign of h’(x) we have different geometrical situations of the channel. If 
h’(x) is positive, the channel is approximated by a divergent wedge with a source of flux 
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at its vertex. If h’(x) is negative, the wedge is convergent with a sink at its vertex. The 
analysis is carried out assuming h’(x) as positive and similar results can be obtained when 
h’(x) is negative. 

In this case the equations of motion (2.2)-(2.4) are written in cylindrical coordinates 
(r, 0) in the form 

1 aP --= 
P ae I v2* - v + ; !!!$ 

r2 1 

(3.11) 

(3.12) 

(3.13) 

where u, u are the components of velocity in the radial and azimuthal directions, 
respectively, and 

v22t+h!+L a2 
dr2 r 13r r2 58 ’ 

We assume that the radial component of velocity to be of the form 

u=fo 
r ’ 

(3.14) 

then it follows from the equation of continuity that 

au -= 
ae 0. 

To satisfy the continuity of the normal component of velocity we assume that u = 0 
because the porous medium is assumed to be saturated. Then the above equations of 
motion become 

1 aP f”(e) --=- 
p dr r3 ’ 

1 aP 
= If’(e). 

iSii r2 

Eliminating p between (3.15) and (3.16) we get 

f ye) + 4f t(e) = 0. 

The boundary conditions (2.6)-(2.9) now take the form 

f(a) sin (Y + f’(a) cos a = -iiuo(fia) - Q) 

-f(x) sin CY + f’(-a) cos a = iiao(fl-a) - Q) 

s 
+” f(e) de = m 

-cI 

where 

(3.15) 

(3.16) 

(3.17) 

when 

when 

e = (y, (3.18) 

e = -ff, (3.19) 

(3.20) 

Q = QIRo, R. = % _ kaP 
cos a ’ QI---a,, 

60 = Fk (i.e. ha0 = Roa) 



484 P. N. SHIVAKUMAR et al. 

ro is the value of r at ~9 = 0. Solving (3.17) using the boundary conditions (3.18) to (3.20) 
we obtain 

PY) = 

u= 

1)= 

1 dP --= 
c1 ar 

1 aP 
rTe= 

P -= 
bl 

where 

2my(sin’ (Y - sin* 6) + 4Xy cos* 0 + K, , (3.21) 

2m7 
7 sin* cu - sin* e) 

0, (3.23) 

r(m + 2X) cos 28 - 
r3 ’ 

4y(m + 2X) sin 28 - 

(3.24) 

r’ 
I 

2M + 2x) cos 28 + constant 
r* 

1 

(3.25) 

(3.26) 

+ 4x7 COS* e + 5 

r r ’ 
(3.22) 

Y= 

sin 2a - 2c1 cos 2ff + 
4a cos ff sin 2ff ’ 

sin (Y + cVuo 

A=- &ToQ 

sin (Y + Go ’ 

Kl = Y 
2m cos (Y sin 2~x + GoQ(sin 2a: + 2a) 

sin a + &a0 I. 
We note that (3.22), (3.23) and (3.26) in the limit a0 - cc tend to 

,=E sin* (Y - sin* e 

r sin a! cos (Y - ff + 2cu sin* (Y ’ 
(3.27) 

D = 0, (3.28) 

P m COS* e - sin* 8 -=- + constant 
P r* sin (Y cos (Y - a + 2ff sin* (Y 

(3.29) 

which are exactly the same as those given by Longlois [2] in the case of a channel 
bounded by rigid boundaries. 

Prior to applying these results to the problem of flow through a channel of varying 
gap bounded by a porous layer, we transform them to Cartesian coordinates, using the 
transformation (Fig. 2): 

24, = u cos 8, U, = u sin e 

cos e = (X - X)/r, sin e = y/r, 

sina= JID+o’, coscY=Jl~~ 

where 

a! = arc tan D, 

x, y are the nondimensional coordinates. 
by 

r = V(x - X)* + y*, 

The components of pressure gradient are given 
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y=-h(x) 

I----- x - _.___) 

Fig. 2. Flow geometry. 

ap x - xap y ap -=----- 
ax r ar r2 ae' 

ap -= yap + x - xap -- -- 
ay r ar r2 ae' (3.30) 

Equations (3.22)-(3.26), using (3.30), become 

mA,,D3h(h2 - y2) + Dh 

‘, = (h2 + dy2)2 (h2 + D2y2)2 
[U&,(1 + dp”h2 + Co(h’ + dy2)], (3.31) 

d@th2 - Y~)Y D'Y 
” = (h2 + dy2)2 + (h2 + dy2)2 

[2.4,&,(1 + d)3’2h2 + C,(h2 + @y2)], (3.32) 

1 ap 
;ax 

4 1 + D”)mD-‘( 1 + d)h[ $ ; zy;;3] , (3.33) 

1 ap 
ctay 

4 1 + b)mD4( I + ti){$+-;;;3] (3.34) 

where 

A0 = 
1 

E + [4aD/(D + iiaoJ 1 + #)I ’ 

Bo a&uoQo -=- 
m D+iiu,Jl +d’ 

Co -= 
m A 

0 
[ 

20 + iiaoQo{D + a(1 + D’)}l6i? 

D + iia,~= 1 9 
E=D-(1 -D2)arctanD, 

h = D(x - X), Qo=$ 

If the curvature of the walls is everywhere small [i.e. h(x)h”(x) 6 1) then at each value of 
x the flow in the channel of varying gap may be approximated to a flow in a wedge with 
vertex at [X(x), 0] and vertex angle [2 arc tan D(x)], where 
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D(x) = h’(X), 

h(x) 
X(x) = x - - 

D(x) 
(3.35) 

The velocity components given by (3.3 1) and (3.32) satisfy the boundary conditions and 
(3.33) and (3.34) satisfy the differential equations approximately provided as 

for all x. 

Ih(x)h”(x)l 4 1, 

Ih’(x)h”(x)J 4 1 (3.36) 

If (3.36) is satisfied, then it is very easy to verify that 

dp = ap 
Ld.x+$dy 

and we have 

L2m s = &( 1 + (B,,/m)J 1 + d)( 1 + D2)D3 dx 

cc x h3 

-,,(l+~~l+,),,+D2)($[$++~~;2] (3.37) 

where c is a constant of integration. Equations (3.31) to (3.34) and (3.37) in the limit of 
a0 - co tend to 

mD3h h2 - y2 
uX = 7 (h2 + D2y2)2 ’ 

mD4y h2 - y2 
‘Y = 7 (h2 + fly2)2 ’ 

1 ap 2m(l + D2)D3h --=- h2 - 3D2y2 

CL ax E (h2 + dy2)3 1 ’ 
1 ap --=- 
p ay 

P_ = 2m ’ (1 + D2P3 ti _ 111 04(1 + D2) 

CL s x Eh3 E 1 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

which coincide with those given by Langlois [2] in the case of a channel bounded by rigid 
boundaries. 

3.3. Third approximation method: Power series expansion in the wall slope 
The second method discussed above leads to rather cumbersome results even for 

analytically simple form of h(x) and also it may happen that the function h(x) satisfying 
(3.36) is such that h’(x) is small but not negligible. Then the modified condition 

ID”1 = Ih’(x)“l Q 1 (3.43) 

is satisfied for some positive integer n. Now for n > 1 the results of the second method 
are expanded in power series in D and the terms of the nth or higher order in D are 
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neglected. For simplicity, we restrict our analyses to the case when n = 3. Expanding arc 
tan D in power series of D, we have 

arc tan D = D - j@ + $0’ + O(D’). (3.44) 

The function E, expanded in terms of D, is given by 

E = $D3[1 - id + O(p) + l - -1. (3.45) 

Hence, 

1+++0(D4)+... 1 , (3.46) 

The expressions for the velocity components and pressure, after neglecting the third and 
higher order in D, take the form 

u,,=;A@ l- ( $)(l-2D$)(;) 

+2ya3 Y - - ( )I: oz 
cyuo h 

+_JL+--__ 
ago @Jo)* 

2D$ ) 1 (3.48) 

1 dP --=-- 
p ax 

:; 1-6D$+;~)-2Q,-D(l-~)], 
C 

1 ap --= 
P ay - T ($1 - x2om 

(3.49) 

(3.50) 

g=2m QW3(l +(~o/m),/l +@Xl +pjdx 
cc s x h3 

_ 3mDA&3U + (~o/m>,/l + D%l + d) 
h* 

Equations (3.47)-(3.51) in the limit of a0 - 00 tend to 

3m l-Y2 
KX = 4h 

( )! 9 
1-2D$+$P ) 

> 

‘Y = 4h %D(l -$)(;), 

lap 3m =-- 
;%i 2h3 

1 _(jD*?f+?p 
h* 5 > ’ 

(3.52) 

(3.53) 

(3.54) 

1 ap 9mD y --=-_ _ 
p ay 0 2h3 h ’ (3.55) 

Es 21:4-c 
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P 3m = -= T2 [S 1 + (7/S)D2 dx _ 3Dy2 

CL X h3 -1 h4 
(3.56) 

which are exactly the same as those given by Langlois [2] in the absence of a 
porous layer. 

3.4. Comparison of the three methods 
The average pressure gradient across the channel is 

&=A- s h(x) ap - dy. 
h(x) o ax (3.57) 

Axi is calculated in the neighbourhood of a given value of x in each of the method 
discussed above and the weight functions Fi(D) are compared where F,(D) are given by 

3m 
hxi = 2Rh3 - Fi(o), i= 1,2,3. (3.58) 

Here Fi(D) (i = 1, 2, 3) depend upon the method used and are given by 

1 - FdD) 2Qo = 
1 + (3ur/Zao) 

7 (3.59) 

4A@ 
F2(D) = 3(1 + d) [ 

l+~$fd , 1 (3.60) 

F3(D)=(1 -F)-2Q41 -&). (3.6 1) 

These weight functions are numerically evaluated for different values of Cruo, for a 
particular value of Q. and are compared in Fig. 3. We see that Fi(D) are influenced by 
the porous parameter Go, and have values smaller than those in the absence of a 
porous layer. 

0.6 

Fig. 3. Comparison of weight functions for Q0 = 0.0 I. 
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4. FLOW THROUGH A CHANNEL WITH A SMOOTH CONSTRICTION 

The above theory is applied to the problem of flow through a channel with a smooth 
axisymmetric constriction (Fig. 4) defined in nondimensional variables, by 

h(x)=H,-yl +cosg (4.1) 

where 6m is the maximum projection of the constriction and Ho is the half-width of the 
channel. This is an idealization into an artery with stenosis. 

The third approximation is valid when the condition (3.43) is satisfied, viz. 

for some positive integer n. 
The expression for D, from (4.1), is 

7&m 
D = h’(x) = - sin ZZ . 

2% x0 
(4.2) 

We note that the condition ID”1 6 1 will be satisfied if the following nondimensional 
quantities take the values 

L = 4.0, xcl = 1.0, 6m = 0.32Ho, Ho = 1.0. 

For these values, IDI has a maximum value of 0.5 at x = x0/2 and satisfies the condition 
(3.43) for all positive values of n. 

To determine the effects of slip and the porous layer on the flow characteristics of the 
stenosis, it is essential to determine the resistance to flow and the shear stress at the 
nominal surface. The resistance to a flow denoted by RF is defined as 

RF= 
average pressure drop across the channel 

momentum flux in the direction of flow ’ 
(4.3) 

To determine RF the average pressure drop across the channel and the flux in the 
direction of flow are to be known. The nondimensional average pressure drop across the 
channel is calculated from the expression 

1 +h(x) La 

P”-P=2hL -m(X) o ax s s 
-%xdy. (4.4) 

l------L----------_-( 
Fig. 4. Idealized geometry for stenosis. 
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Using (3.49) and integrating over the interval -h to +h (4.4) takes the form 

s 
’ 3 P(1 - (3/5@) - 4QdY1 - W~~o))l dx 

p= 02hL h* 
7 

Equation (4.5) can be written in the form 

where 

II = 

I* = 

P = j$ [I1 + 121 

s 0 xo/2 2( 1 - (3/5)02) - h* 4Qfi( 1 - (D/Go) dx 3 

s L/2 2 

-dx. 
w2 Hii 

(4.5) 

(4.6) 

The nondimensional momentum flux in the horizontal direction has the form 

s 

+h 

M= 6 dy 
-h 

(4.7) 

and after performing the indicated integration, simplifies to 

2m2K M=- 
h 

where 

A5 = 2D6, 

The expression for RF using (4.6) and (4.8) now becomes 

3z1+z2 RF.- 

2 m*KL * 

(4.8) 

(4.9) 

(4.10) 

Analytical evaluation of the integral I, is complicated and hence it is evaluated numerically. 
RF was calculated for different values of Go and the behaviour of RF with Guo is 
presented in Fig. 5. From this it is clear that RF is maximum for small values of &JO 
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3.0 

k 2.0 

"E 

1.0 

0 ._ 
111 

(~10) and decreases slightly in the range 10 < &a0 < lo3 because of the existence of a 
thin boundary layer (see Rudraiah and Masuoka [9]) and for values of &rO > 103, RF 
remains uniform because of the negligible effect of the porous layer. 

The resistance given by (4.10) is computed using the momentum flux. However in 
biomechanical problems, for example, in the study of blood rheology in arterial flows, 
the resistance to flow is normally defined (Lightfoot [lo]) as 

Fig. 5. Resistance force vs permeability. 

491 

RF = 
pressure drop = 3(Zl + 12) 

volumetric flow rate mhL ’ 
(4.11) 

The resistance to flow given by (4.11) is numerically computed for different values of 
&J,-, and the results are compared with those of (4.10). We observe that the overall nature 
of the resistance to flow with the porous layer is the same whether we use (4.10) or (4.11) 
except for a slight change. 

The nondimensional shear stress at the nominal surface is next calculated using the 
expression 

for different values of &uO, and the results are presented in Table 1. 
It is seen that as expected from physical consideration that for small values of GuO the 

shear stress is small which increases with increasing Go. Larger values of &a0 (>104) 
correspond to the rigid case where shear stress is large. 

Table 1. D = 0.5, x = x0/2 

all#J h TXY 

10 0.84 0.687333 
102 0.84 0.8562346 

z , 0.84 0.84 0.8826627 0.8854583 
10’ 0.84 0.8857394 

When D = 0, h = 0.68, 7xy = 3.2439. 
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5. CONCLUSIONS 

The principle parameter governing the momentum of fluid in the artery is CUQ. To 
understand the effect of this parameter three approximate methods have been presented. 
These methods provide an alternate approach to the conventional method of solving two 
dimensional problem by conformal mapping. The weight functions Fi are computed in 
each of the methods for different values of &a0 and the results are compared in Fig. 3 
with those in the absence of a porous layer. From this it is clear that the weight function 
F,(D) is independent of GQ, while Fz(D) and F3(D) are influenced by it and have values 
smaller than those in the absence of a porous layer. To study the effect of interstitial 
space (idealized as a porous layer) on stenosis an idealized stenosis geometry is considered 
and the flow characteristics such as resistance to flow and shear stress at the surface are 
determined. The effect of porous parameter &a0 on RF is depicted in Fig. 5. It is seen 
that the porous parameter aa0 greatly influences RF which decreases upto the value of 
Go I lo3 and it becomes independent of the porous parameter for values of G-r0 greater 
than 103. According to Rudraiah and Masuoka [9], the transition from the Darcy model 
to the Brinkman model takes place for values of Cuq in the range 10 < Guo < 103. 
Therefore the decrease in RF in this range can be attributed to the existence of a thin 
boundary layer. RF remains uniform for CruO > lo3 because the nominal surface acts 
almost as a rigid impermeable wall. From Table 1 it is clear that the shear stress is small 
for small values of &q, because of the boundary layer nature of Brinkman model for 
sparsely packed tissues. For large values of Go the shear stress increases as expected from 
physical grounds. This information, an increase or decrease of RF and shear stress with 
the porous parameter, is useful in evaluating the performance of various prosthetic devices 
that ultimately may be implanted into the living system. The work is in progress to 
consider the finite thickness of the porous layer using the modified BJ condition 
(Rudraiah [8]). 
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