69 research outputs found

    3-D neurohistology of transparent tongue in health and injury with optical clearing

    Get PDF
    Tongue receives extensive innervation to perform taste, sensory, and motor functions. Details of the tongue neuroanatomy and its plasticity in response to injury offer insights to investigate tongue neurophysiology and pathophysiology. However, due to the dispersed nature of the neural network, standard histology cannot provide a global view of the innervation. We prepared transparent mouse tongue by optical clearing to reveal the spatial features of the tongue innervation and its remodeling in injury. Immunostaining of neuronal markers, including PGP9.5 (pan-neuronal marker), calcitonin gene-related peptide (sensory nerves), tyrosine hydroxylase (sympathetic nerves), and vesicular acetylcholine transporter (cholinergic parasympathetic nerves and neuromuscular junctions), was combined with vessel painting and nuclear staining to label the tissue network and architecture. The tongue specimens were immersed in the optical-clearing solution to facilitate photon penetration for 3-dimensiontal (3-D) confocal microscopy. Taking advantage of the transparent tissue, we simultaneously revealed the tongue microstructure and innervation with subcellular-level resolution. 3-D projection of the papillary neurovascular complex and taste bud innervation was used to demonstrate the spatial features of tongue mucosa and the panoramic imaging approach. In the tongue injury induced by 4-nitroquinoline 1-oxide administration in the drinking water, we observed neural tissue remodeling in response to the changes of mucosal and muscular structures. Neural networks and the neuromuscular junctions were both found rearranged at the peri-lesional region, suggesting the nerve-lesion interactions in response to injury. Overall, this new tongue histological approach provides a useful tool for 3-D imaging of neural tissues to better characterize their roles with the mucosal and muscular components in health and disease

    Genetic engineering of non-beta-cells for regulated insulin secretion

    No full text
    Ph.D.Committee Chair: Athanassios Sambani

    3-D Imaging Reveals Participation of Donor Islet Schwann Cells and Pericytes in Islet Transplantation and Graft Neurovascular Regeneration

    Get PDF
    The primary cells that participate in islet transplantation are the endocrine cells. However, in the islet microenvironment, the endocrine cells are closely associated with the neurovascular tissues consisting of the Schwann cells and pericytes, which form sheaths/barriers at the islet exterior and interior borders. The two cell types have shown their plasticity in islet injury, but their roles in transplantation remain unclear. In this research, we applied 3-dimensional neurovascular histology with cell tracing to reveal the participation of Schwann cells and pericytes in mouse islet transplantation. Longitudinal studies of the grafts under the kidney capsule identify that the donor Schwann cells and pericytes re-associate with the engrafted islets at the peri-graft and perivascular domains, respectively, indicating their adaptability in transplantation. Based on the morphological proximity and cellular reactivity, we propose that the new islet microenvironment should include the peri-graft Schwann cell sheath and perivascular pericytes as an integral part of the new tissue

    Development of Multi-Axis Crank Linkage Motion System for Synchronized Flight Simulation with VR Immersion

    No full text
    This paper developed a rotatable multi-axis motion platform combined with virtual reality (VR) immersion for flight simulation purposes. The system could simulate the state of the flight operation. The platform was mainly comprised of three crank linkage mechanisms to replace an expensive six degrees of freedom (DoF) Stewart platform. Then, an independent subsystem which could rotate ±180° was installed at the center of the platform. Therefore, this platform exhibited 4-DoF movement, such as heave, roll, pitch, and yaw. In the servo motor control unit, Visual Studio C# was applied as the software to establish a motion control system to interact with the motion controller and four sets of servo motors. Ethernet Control Automation Technology (EtherCAT) was utilized to communicate the commands and orders between a PC and each servo motor. The optimum controller parameters of this system were obtained using Simulink simulation and verified by experiment. The multiple sets of servo motors and crank linkage mechanisms were synchronized with flight VR imagery. For VR imagery, the software Unity was used to design the flying digital content. The controller was used to transmit the platform’s spatial information to meet the direction of the pilot commands and to compensate the direction of the deviation in spatial coordinates. To achieve synchronized response and motion with respect to the three crank linkage mechanism platform and VR imagery on the tester’s goggle view, the relation of the spatial coordinate of VR imagery and three crank linkage mechanisms was transformed to angular displacement, speed and acceleration which were used to command the motor drive system. As soon as the position of the VR imagery changed, the computer instantly synchronized the VR imagery information to the multi-axis platform and performed multi-axis dynamic motion synchronously according to its commanded information. The testers can thus immerse in the VR image environment by watching the VR content, and obtain a flying experience
    corecore