14 research outputs found

    Estimation of mechanics parameters of rock in consideration of confining pressure using monitoring while drilling data

    Get PDF
    During the drilling process, high-strength rock can lead to various issues such as drilling suppression, bit wear, and increased operational costs. To ensure safe and efficient drilling operations, it is crucial to accurately predict the strength parameters of the rock and recommend modifications to operational procedures. This paper proposes a low-cost and fast measurement method for predicting the strength parameters of rock in the field. To evaluate the effectiveness of this method, a drilling process monitoring experiment was conducted on sandstone, limestone, and granite. The experiment studied the effect of confining pressure on the response of cutting with an impregnated diamond bit. By analyzing the relationship between the thrust force, torque force, and penetration depth under different confining pressures, the researchers developed an analytical model for drilling that considers confining pressure, compressed crushed zone, and bit geometry. The results show that the confining pressure has a significant effect on the cutting response. As the confining pressure increases, the thrust force, torque force, and penetration depth at the cutting point also increase. Furthermore, a new measurement method was proposed to determine the strength parameters, such as cohesion, internal friction angle, and unconfined compressive strength. The estimated strength parameters for the three rock types using the drilling method were in good agreement with those of the standard laboratory test, with an error range of 10%. This method of estimating rock strength parameters is a practical tool for engineers. It can continuously and quickly obtain the drilling parameters of in-situ rocks

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Speciation Variation and Comprehensive Risk Assessment of Metal(loid)s in Surface Sediments of Intertidal Zones

    No full text
    Speciation variation and comprehensive risk assessment of metal(loid)s (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn) were investigated in surface sediments from the intertidal zones of the Yellow River Delta, China. Results showed that only the concentrations of As, Cd and Pb were significantly different between April and September (p < 0.01). In April, the residual fraction (F4) was predominant for As, Cr, Cu, Ni and Zn. However, the exchangeable and carbonate-associated fraction (F1) was dominant for Cd averaging 49.14% indicating a high environmental risk. In September, the F4 fraction was predominant and the F1 fraction was very low for most metal(loid)s except Cd and Mn. The geo-accumulation index (Igeo), the F1 fraction and potential ecological risk index (PERI) of most metal(loid)s were relatively low in surface sediments for both seasons. But Pb, As and Ni were between the threshold effect level (TEL)and the probable effect level (PEL) for 66.67%, 83.33% and 91.67% in April and As and Ni were between TEL and PEL for 41.67% and 91.67%, which indicated that the concentration of them was likely to occasionally exhibit adverse effects on the ecosystem. Although the Igeo, the F1 fraction or PERI of Cd in both seasons was higher at some sites, the results of sediment quality guidelines (SQGs) indicated that the biological effects of Cd were rarely observed in the studied area

    Characterization of Atmospheric Fine Particles and Secondary Aerosol Estimated under the Different Photochemical Activities in Summertime Tianjin, China

    No full text
    In order to evaluate the pollution characterization of PM2.5 (particles with aerodynamic diameters less than or equal to 2.5 μm) and secondary aerosol formation under the different photochemical activity levels, CO was used as a tracer for primary aerosol, and hourly maximum of O3 (O3,max) was used as an index for photochemical activity. Results showed that under the different photochemical activity levels of L, M, LH and H, the mass concentration of PM2.5 were 29.8 ± 17.4, 32.9 ± 20.4, 39.4 ± 19.1 and 42.2 ± 18.9 μg/m3, respectively. The diurnal patterns of PM2.5 were similar under the photochemical activity and they increased along with the strengthening of photochemical activity. Especially, the ratios of estimated secondary aerosol to the observed PM2.5 were more than 58.6% at any hour under the photochemical activity levels of LH and H. The measured chemical composition included water soluble inorganic ions, organic carbon (OC), and element carbon (EC), which accounted for 73.5 ± 14.9%, 70.3 ± 24.9%, 72.0 ± 21.9%, and 65.8 ± 21.2% in PM2.5 under the photochemical activities of L, M, LH, and H, respectively. Furthermore, the sulfate (SO42−) and nitrate (NO3−) were nearly neutralized by ammonium (NH4+) with the regression slope of 0.71, 0.77, 0.77, and 0.75 between [NH4+] and 2[SO42−] + [NO3−]. The chemical composition of PM2.5 was mainly composed of SO42−, NO3−, NH4+ and secondary organic carbon (SOC), indicating that the formation of secondary aerosols significantly contributed to the increase in PM2.5. The formation mechanism of sulfate in PM2.5 was the gas-phase oxidation of SO2 to H2SO4. Photochemical production of nitric acid was intense during daytime, but particulate nitrate concentration was low in the afternoon due to high temperature

    TaTLP1 interacts with TaPR1 to contribute to wheat defense responses to leaf rust fungus.

    No full text
    Thaumatin-like proteins (TLPs), which are defined as pathogenesis-related protein family 5 (PR5) members, are common plant proteins involved in defense responses and confer antifungal activity against many plant pathogens. Our earlier studies have reported that the TaTLP1 gene was isolated from wheat and proved to be involved in wheat defense in response to leaf rust attack. The present study aims to identify the interacting proteins of TaTLP1 and characterize the role of the interaction between wheat and Puccinia triticina (Pt). Pull-down experiments designed to isolate the molecular target of TaTLP1 in tobacco resulted in the identification of TaPR1, a pathogenesis-related protein of family 1, and the interaction between TaTLP1 and TaPR1 was confirmed by yeast two-hybrid experiments (Y2H), bimolecular fluorescence complementation (BiFC), and co-immunoprecipitation (Co-IP). In vitro, TaTLP1 and TaPR1 together increased antifungal activity against Pt. In vivo, the disease resistance phenotype, histological observations of fungal growth and host responses, and accumulation of H2O2 in TaTLP1-TaPR1 in co-silenced plants indicated that co-silencing significantly enhanced wheat susceptibility compared to single knockdown TaTLP1 or TaPR1 plants. The accumulation of reactive oxygen species (ROS) was significantly reduced in co-silenced plants compared to controls during Pt infection, which suggested that the TaTLP1-TaPR1 interaction positively modulates wheat resistance to Pt in an ROS-dependent manner. Our findings provide new insights for understanding the roles of two different PRs, TaTLP1 and TaPR1, in wheat resistance to leaf rust

    Electrolyte Engineering Toward High Performance High Nickel (Ni ≥ 80%) Lithium‐Ion Batteries

    No full text
    Abstract High nickel (Ni ≥ 80%) lithium‐ion batteries (LIBs) with high specific energy are one of the most important technical routes to resolve the growing endurance anxieties. However, because of their extremely aggressive chemistries, high‐Ni (Ni ≥ 80%) LIBs suffer from poor cycle life and safety performance, which hinder their large‐scale commercial applications. Among varied strategies, electrolyte engineering is very powerful to simultaneously enhance the cycle life and safety of high‐Ni (Ni ≥ 80%) LIBs. In this review, the pivotal challenges faced by high‐Ni oxide cathodes and conventional LiPF6‐carbonate‐based electrolytes are comprehensively summarized. Then, the functional additives design guidelines for LiPF6‐carbonate ‐based electrolytes and the design principles of high voltage resistance/high safety novel electrolytes are systematically elaborated to resolve these pivotal challenges. Moreover, the proposed thermal runaway mechanisms of high‐Ni (Ni ≥ 80%) LIBs are also reviewed to provide useful perspectives for the design of high‐safety electrolytes. Finally, the potential research directions of electrolyte engineering toward high‐performance high‐Ni (Ni ≥ 80%) LIBs are provided. This review will have an important impact on electrolyte innovation as well as the commercial evolution of high‐Ni (Ni ≥ 80%) LIBs, and also will be significant to breakthrough the energy density ceiling of LIBs
    corecore