13 research outputs found

    Genome Sequencing of SHH Medulloblastoma Predicts Genotype-Related Response to Smoothened Inhibition

    Get PDF
    SummarySmoothened (SMO) inhibitors recently entered clinical trials for sonic-hedgehog-driven medulloblastoma (SHH-MB). Clinical response is highly variable. To understand the mechanism(s) of primary resistance and identify pathways cooperating with aberrant SHH signaling, we sequenced and profiled a large cohort of SHH-MBs (n = 133). SHH pathway mutations involved PTCH1 (across all age groups), SUFU (infants, including germline), and SMO (adults). Children >3 years old harbored an excess of downstream MYCN and GLI2 amplifications and frequent TP53 mutations, often in the germline, all of which were rare in infants and adults. Functional assays in different SHH-MB xenograft models demonstrated that SHH-MBs harboring a PTCH1 mutation were responsive to SMO inhibition, whereas tumors harboring an SUFU mutation or MYCN amplification were primarily resistant

    Nrdp1-mediated degradation of the gigantic IAP, BRUCE, is a novel pathway for triggering apoptosis

    No full text
    Degradation of certain inhibitor of apoptosis proteins (IAPs) appears to be critical in the initiation of apoptosis, but the factors that regulate their degradation in mammalian cells are unknown. Nrdp1/FLRF is a RING finger-containing ubiquitin ligase that catalyzes degradation of the EGF receptor family member, ErbB3. We show here that Nrdp1 associates with BRUCE/apollon, a 530 kDa membrane-associated IAP, which contains a ubiquitin-carrier protein (E2) domain. In the presence of an exogenous E2, UbcH5c, purified Nrdp1 catalyzes BRUCE ubiquitination. In vivo, overexpression of Nrdp1 promotes ubiquitination and proteasomal degradation of BRUCE. In many cell types, apoptotic stimuli induce proteasomal degradation of BRUCE (but not of XIAP or c-IAP1), and decreasing Nrdp1 levels by RNA interference reduces this loss of BRUCE. Furthermore, decreasing BRUCE content by RNA interference or overexpression of Nrdp1 promotes apoptosis. Thus, BRUCE normally inhibits apoptosis, and Nrdp1 can be important in the initiation of apoptosis by catalyzing ubiquitination and degradation of BRUCE

    Targeting Sonic Hedgehog-Associated Medulloblastoma through Inhibition of Aurora and Polo-like Kinases

    No full text
    Medulloblastoma is the most common malignant brain tumor in children. Although aggressive surgery, radiation, and chemotherapy have improved outcomes, survivors suffer severe long-term side effects, and many patients still succumb to their disease. For patients whose tumors are driven by mutations in the sonic hedgehog (SHH) pathway, SHH antagonists offer some hope. However, many SHH-associated medulloblastomas do not respond to these drugs, and those that do may develop resistance. Therefore, more effective treatment strategies are needed for both SHH and non-SHH-associated medulloblastoma. One such strategy involves targeting the cells that are critical for maintaining tumor growth, known as tumor-propagating cells (TPC). We previously identified a population of TPCs in tumors from patched mutant mice, a model for SHH-dependent medulloblastoma. These cells express the surface antigen CD15/SSEA-1 and have elevated levels of genes associated with the G2-M phases of the cell cycle. Here, we show that CD15(+) cells progress more rapidly through the cell cycle than CD15(-) cells and contain an increased proportion of cells in G2-M, suggesting that they might be vulnerable to inhibitors of this phase. Indeed, exposure of tumor cells to inhibitors of Aurora kinase (Aurk) and Polo-like kinases (Plk), key regulators of G2-M, induces cell-cycle arrest, apoptosis, and enhanced sensitivity to conventional chemotherapy. Moreover, treatment of tumor-bearing mice with these agents significantly inhibits tumor progression. Importantly, cells from human patient-derived medulloblastoma xenografts are also sensitive to Aurk and Plk inhibitors. Our findings suggest that targeting G2-M regulators may represent a novel approach for treatment of human medulloblastoma

    Targeting Sonic Hedgehog-Associated Medulloblastoma through Inhibition of Aurora and Polo-like Kinases

    No full text
    Medulloblastoma (MB) is the most common malignant brain tumor in children. While aggressive surgery, radiation, and chemotherapy have improved outcomes, survivors suffer severe long-term side effects, and many patients still succumb to their disease. For patients whose tumors are driven by mutations in the Sonic hedgehog (SHH) pathway, SHH antagonists offer some hope. However, many SHH-associated MBs do not respond to these drugs, and those that do may develop resistance. Therefore, more effective treatment strategies are needed for both SHH and non-SHH-associated MB. One such strategy involves targeting the cells that are critical for maintaining tumor growth, known as tumor-propagating cells (TPCs). We previously identified a population of TPCs in tumors from patched mutant mice, a model for SHH-dependent MB. These cells express the surface antigen CD15/SSEA-1 and have elevated levels of genes associated with the G2/M phases of the cell cycle. Here, we show that CD15+ cells progress more rapidly through the cell cycle than CD15- cells and contain an increased proportion of cells in G2/M, suggesting that they might be vulnerable to inhibitors of this phase. Indeed, exposure of tumor cells to inhibitors of Aurora and Polo-like kinases, key regulators of G2/M, induces cell cycle arrest, apoptosis and enhanced sensitivity to conventional chemotherapy. Moreover, treatment of tumor-bearing mice with these agents significantly inhibits tumor progression. Importantly, cells from human patient-derived MB xenografts are also sensitive to Aurora and Polo-like kinase inhibitors. Our findings suggest that targeting G2/M regulators may represent a novel approach for treatment of human MB

    Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells

    No full text
    Medulloblastoma is the most common malignant brain tumor in children, but the cells from which it arises remain unclear. Here we examine the origin of medulloblastoma resulting from mutations in the Sonic hedgehog (Shh) pathway. We show that activation of Shh signaling in neuronal progenitors causes medulloblastoma by 3 months of age. Shh pathway activation in stem cells promotes stem cell proliferation but only causes tumors after commitment to-and expansion of-the neuronal lineage. Notably, tumors initiated in stem cells develop more rapidly than those initiated in progenitors, with all animals succumbing by 3-4 weeks. These studies suggest that medulloblastoma can be initiated in progenitors or stem cells but that Shh-induced tumorigenesis is associated with neuronal lineage commitment
    corecore