804 research outputs found

    PREDICTION OF TRUNK MUSCLE FORCES AND INTERNAL LOADS DURING FORWARD FLEXION ACTIVITIES

    Get PDF
    Knowledge of load distribution among passive and active components of the human trunk during various occupational and sportive activities is essential to assess the risk of injury and to improve prevention, evaluation, and rehabilitation of spinal disorders. To solve the trunk redundancy toward determination of muscle forces and passive loads in forward bending tasks ± loads in hands, a novel synergistic kinematics-based approach coupled with a nonlinear finite element model are introduced. As a part of this study, trunk kinematics needed as input data and surface EMG activity of selected c:.bdominal/back muscles needed for validation of model are measured in normal subjects during isometric forward bending tasks. Predictions are in satisfactory agreement with in vivo measurements. The model proves promising in exercise and rehabilitation applications

    RESPONSE ANALYSIS OF THE KNEE JOINT IN FLEXION UNDER QUADRCEPS ACTIVATION

    Get PDF
    The human knee joint is a complex structure with interactions between muscle forces, ligaments, menisci and articulations at different regions. Proper management of rehabilitation and treatment programs requires a solid understanding of such interactions in intact and injured conditions. Towards this goal, a realistic nonlinear 3-D finite element model of the entire knee joint is developed. In this work, the ligament forces and contact stresses/areas are computed as the unconstrained joint is flexed from 0° to 90° ± a constant 137 N quadriceps force. Predictions support the coupling between various components as a function of quadriceps exertion and flexion angle. The model is promising in augmenting our understanding of the joint function leading to improved design for rehabilitation programs and replacement procedures in active patients

    KNEE JOINT LIGAMENT RECONSTRUCTION: ON PRETENSION AND COUPLING IN CRUCIATE LIGAMENTS

    Get PDF
    Wide range of knee cruciate ligament reconstruction procedures with different materials, stiffness, pretensions, orientations, and insertion locations are currently used with the primary goal to restore the joint laxity. With the general lack of success in preservation of force in the reconstructed ligament, the concern, not yet addressed, arises as to the effect of reconstruction on the other intact cruciate ligament. Using a 3-D finite element model, we examined this hypothesis by varying the pretension in each ligament under flexion ±A-P loads and quantifying the extent of coupling between cruciate ligaments. A remarkable coupling was predicted. Moreover, changes in laxity and in ligament forces as ligament pretension was altered varied with flexion and loads. These findings have important consequences in proper management and rehabilitation of the joint ligament disorders

    Biomechanical effects of lumbar fusion surgery on adjacent segments using musculoskeletal models of the intact, degenerated and fused spine

    Get PDF
    ABSTRACT: Adjacent segment disorders are prevalent in patients following a spinal fusion surgery. Postoperative alterations in the adjacent segment biomechanics play a role in the etiology of these conditions. While experimental approaches fail to directly quantify spinal loads, previous modeling studies have numerous shortcomings when simulating the complex structures of the spine and the pre/postoperative mechanobiology of the patient. The biomechanical effects of the L4–L5 fusion surgery on muscle forces and adjacent segment kinetics (compression, shear, and moment) were investigated using a validated musculoskeletal model. The model was driven by in vivo kinematics for both preoperative (intact or severely degenerated L4–L5) and postoperative conditions while accounting for muscle atrophies. Results indicated marked changes in the kinetics of adjacent L3–L4 and L5–S1 segments (e.g., by up to 115% and 73% in shear loads and passive moments, respectively) that depended on the preoperative L4–L5 disc condition, postoperative lumbopelvic kinematics and, to a lesser extent, postoperative changes in the L4–L5 segmental lordosis and muscle injuries. Upper adjacent segment was more affected post-fusion than the lower one. While these findings identify risk factors for adjacent segment disorders, they indicate that surgical and postoperative rehabilitation interventions should focus on the preservation/restoration of patient's normal segmental kinematics

    Effects of sex, age, body height and body weight on spinal loads: sensitivity analyses in a subject-specific trunk musculoskeletal model.

    Get PDF
    Subject-specific parameters influence spinal loads and the risk of back disorders but their relative effects are not well understood. The objective of this study is to investigate the effects of changes in age (35-60 years), sex (male, female), body height (BH: 150-190 cm) and body weight (BW: 50-120 kg) on spinal loads in a full factorial simulation using a personalized (spine kinematics, geometry, musculature and passive properties) kinematics driven musculoskeletal trunk finite element model. Segmental weight distribution (magnitude and location along the trunk) was estimated by a novel technique to accurately represent obesity. Five symmetric sagittal loading conditions were considered, and main effect plots and analyses of variance were employed to identify influential parameters. In all 5 tasks simulated, BW (98.9% in compression and 96.1% in shear) had the greatest effect on spinal loads at the L4-L5 and L5-S1 levels followed by sex (0.7% in compression and 2.1% in shear), BH (0.4% in compression and 1.5% in shear) and finally age (<5.4%). At identical BH and BW, spinal loads in females were slightly greater than those in males by ~4.7% in compression and ~8.7% in shear. In tasks with no loads in hands, BW-normalized spinal loads further increased with BW highlighting the exponential increase in spinal loads with BW that indicates the greater risk of back disorders especially in obese individuals. Uneven distribution of weight in obese subjects, with more BW placed at the lower trunk, further (though slightly <7.5%) increased spinal loads.This work was supported by the institut de recherche Robert-Sauvé en santé et en sécurité du travail 294 (IRSST-2014-0009) and the fonds de recherche du Québec en nature et technologies (FRQNT)

    Biomechanical analysis of the lumbar spine on facet joint force and intradiscal pressure - a finite element study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Finite element analysis results will show significant differences if the model used is performed under various material properties, geometries, loading modes or other conditions. This study adopted an FE model, taking into account the possible asymmetry inherently existing in the spine with respect to the sagittal plane, with a more geometrically realistic outline to analyze and compare the biomechanical behaviour of the lumbar spine with regard to the facet force and intradiscal pressure, which are associated with low back pain symptoms and other spinal disorders. Dealing carefully with the contact surfaces of the facet joints at various levels of the lumbar spine can potentially help us further ascertain physiological behaviour concerning the frictional effects of facet joints under separate loadings or the responses to the compressive loads in the discs.</p> <p>Methods</p> <p>A lumbar spine model was constructed from processes including smoothing the bony outline of each scan image, stacking the boundary lines into a smooth surface model, and subsequent further processing in order to conform with the purpose of effective finite element analysis performance. For simplicity, most spinal components were modelled as isotropic and linear materials with the exception of spinal ligaments (bilinear). The contact behaviour of the facet joints and changes of the intradiscal pressure with different postures were analyzed.</p> <p>Results</p> <p>The results revealed that asymmetric responses of the facet joint forces exist in various postures and that such effect is amplified with larger loadings. In axial rotation, the facet joint forces were relatively larger in the contralateral facet joints than in the ipsilateral ones at the same level. Although the effect of the preloads on facet joint forces was not apparent, intradiscal pressure did increase with preload, and its magnitude increased more markedly in flexion than in extension and axial rotation.</p> <p>Conclusions</p> <p>Disc pressures showed a significant increase with preload and changed more noticeably in flexion than in extension or in axial rotation. Compared with the applied preloads, the postures played a more important role, especially in axial rotation; the facet joint forces were increased in the contralateral facet joints as compared to the ipsilateral ones at the same level of the lumbar spine.</p

    Evaluation of spinal posture using Microsoft Kinectâ„¢: a preliminary case-study with 98 volunteers

    Get PDF
    This work proposes a novel approach to assess spinal curvature, by using Microsoft's Kinect™ to obtain 3D reconstructed models of subject's dorsal skin surface in different postures. This method is non-invasive, radiation-free and low-cost. The trial tests here presented intended to evaluate the reliability of this approach, by assessing the tendency of 98 volunteers to present scoliosis. The shoulder height difference was calculated for each subject's scan, by quantifying the angular slope of a line crossing both scapulae. The volunteers’ average age was 24.7 years. Results showed that 68.37% of the volunteers revealed differences higher than 1° between the shoulders, having that their record in what concerns to loads and lesions proved to increase the angular slope. This initial approach shall establish the grounds for assessing spinal posture in pre-clinical or industrial ergonomics scans. Further studies shall include comparison versus traditional imaging methods and experienced clinical evaluation.info:eu-repo/semantics/publishedVersio

    The effect of axial load on the sagittal plane curvature of the upright human spine in vivo

    Get PDF
    Copyright © 2008 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Pattern Recognition . Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Biomechanics, Vol. 41 Issue 13 (2008), DOI: 10.1016/j.jbiomech.2008.06.035Determining the effect of load carriage on the human spine in vivo is important for determining spinal forces and establishing potential mechanisms of back injury. Previous studies have suggested that the natural curvature of the spine straightens under load, but are based on modelling and external measurements from the surface of the back. In the current study, an upright positional MRI scanner was used to acquire sagittal images of the lumbar and lower thoracic spine of 24 subjects. The subjects were imaged in standing whilst supporting 0, 8 and 16 kg of load which was applied axially across the shoulders using an apron. An active shape model of the vertebral bodies from T10 to S1 was created and used to characterise the effect of load. The results from the shape model showed that the behaviour of the average-shaped spine was to straighten slightly. However, the shape model also showed that the effect of load exhibited systematic variation between individuals. Those who had a smaller than average curvature before loading straightened under load, whereas those who had a greater than average curvature before loading showed an increase in curvature under load. The variation in behaviour of differently shaped spines may have further implications for the effects of load in lifting manoeuvres and in understanding the aetiology of back pain

    Biomechanical comparison of a new stand-alone anterior lumbar interbody fusion cage with established fixation techniques – a three-dimensional finite element analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Initial promise of a stand-alone interbody fusion cage to treat chronic back pain and restore disc height has not been realized. In some instances, a posterior spinal fixation has been used to enhance stability and increase fusion rate. In this manuscript, a new stand-alone cage is compared with conventional fixation methods based on the finite element analysis, with a focus on investigating cage-bone interface mechanics and stress distribution on the adjacent tissues.</p> <p>Methods</p> <p>Three trapezoid 8° interbody fusion cage models (dual paralleled cages, a single large cage, or a two-part cage consisting of a trapezoid box and threaded cylinder) were created with or without pedicle screws fixation to investigate the relative importance of the screws on the spinal segmental response. The contact stress on the facet joint, slip displacement of the cage on the endplate, and rotational angle of the upper vertebra were measured under different loading conditions.</p> <p>Results</p> <p>Simulation results demonstrated less facet stress and slip displacement with the maximal contact on the cage-bone interface. A stand-alone two-part cage had good slip behavior under compression, flexion, extension, lateral bending and torsion, as compared with the other two interbody cages, even with the additional posterior fixation. However, the two-part cage had the lowest rotational angles under flexion and torsion, but had no differences under extension and lateral bending.</p> <p>Conclusion</p> <p>The biomechanical benefit of a stand-alone two-part fusion cage can be justified. This device provided the stability required for interbody fusion, which supports clinical trials of the cage as an alternative to circumferential fixations.</p
    • …
    corecore