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OSMOTIC PRESTRESSING OF A SPINAL MOTION SEG-
MENT

Snijders, H., Houben, G.B., Drost, M.R., Huyghe, J.M., Janssen, J.D.,
Huson A.

Dept. of Movement Sciences, University of Limburg, Maastricht, The
Netherlands.

Dept. of Mechanical Engineering, Eindhoven University of Technology,
Eindhoven, The Netherlands.

Summary

The mechanical behaviour in axial compression of a human lumbar
motion segment (MS) without the facet joints (posterior elements) is modelled
using two porous medium descriptions, one including, the other excluding
Donnan osmosis. Donnan osmosis is shown to affect the anulus fibre and ground
matrix stresses and the fluid flow through the intervertebral disc. Hence, models
not including the osmotic effect appear to be inadequate with respect to the
prediction of these quantities. In an axial compression simulation of the motion
segment major differences occur in axial displacement (after 10 h biphasic 16%
more than triphasic), expelled fluid volume versus time (after 10 h triphasic 28%
less), fluid pressure (at the base at the inner anulus after 50 s triphasic 26%
higher than biphasic), and fibre stress (at the base at the anulus edge after 50 s
triphasic 60% higher than biphasic). Although the triphasic simulation maintains
a higher fluid pressure, less water is expelled.

Introduction

The human lumbar spine constitutes a mechanical unit that allows for
flexion, extension and rotation, while it supports the body. The basic unit of the
spine is the motion segment (MS) which consists of 2 vertebrae that enclose the
intervertebral disc (IVD). Intervertebral disc tissue consists of a collagen and
elastin fibre network embedded in a hydrated proteoglycan (PG) matrix. Small
nutrients and ions are dissolved within the tissue. Because of the entanglement of
the PG and the fibre network only the interstitial fluid and the small ions can
flow. The PG are ionized and because they are relatively stagnant, osmotic
effects are important (Urban and Maroudas, 1979).

Mechanical models of the IVD are described in terms of the theory of
mixtures. In the biphasic mixture model the solid and fluid phases are regarded
as two separate continua. The biphasic model has been used as a basis for finite
element modelling of the IVD (Simon et al., 1985). When, however, the osmotic
effect plays an important role, it must be accounted for as a third phase: the
ionic phase (Lai et al, 1991, Snijders et al., 1992). As the osmotic force is
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deformation dependent, it cannot be accounted for in the biphasic model using a
constant term. To demonstrate the differences between the bi- and triphasic
approaches, we compared the models in an axial compression simulation of a
motion segment.

Theory

Deformation of the tissue can be achieved either by mechanical or
chemical loading. The overall response is a result of the (1) diffusion of mobile
ions, (2) the large deformation of the fibre network and the ground substance
with relative fluid flow, and (3) osmosis. In order to describe this complex
behaviour we use the theory of mixtures (Bowen, 1980, Miiller, 1985). Starting
with the kinematic relationships and the general balance laws, specific assump-
tions for intervertebral disc tissue are incorporated and constitutive restrictions
based on the entropy principle are derived (Snijders et al., 1992). The resulting
equations are: mass balance (continuity) of the mixture, momentum balance of
the mixture and the diffusion equation of the ions. In this study no ion diffusion
is used, but simply an instantaneous ion distribution based on Donnan equilib-
rium for large negatively charged molecules (PG) and small univalent ions. This
is admissible because of the constant external ion concentration. Due to the solid
deformation ions will still move out of the tissue, but this migration is taken up
largely by the convection with water. ‘Hence, diffusion only plays an important
role in the local redistribution of ions. The equations are given below:

momentum : Vog-Vp = 0
continuity : Vors-Vo[K-V(p-w)] = 0 D
jon distribution : 2¢™ = —cPE+/(cPE)?+4c?
0SMOSis 1 W = x(2c +cPE)
with ¢ the solid Cauchy stress tensor ¢ the anion concentration

p the hydrodynamic pressure ¢ the external salt concentration

v the velocity of the solid c” the proteoglycan concentration

K the permeability tensor x the osmotic coefficient

The primary unknowns arc the displacement of the solid G, the fluid
pressure p and the ion concentration ¢. The equations above, combined with the
appropriate material behaviour, initial and boundary conditions complete the
description of the mechanical behaviour of intervertebral disc tissue. To solve
this problem the Finite Element Method is used (Snijders et al, in press). A
Total Lagrange (Newton-Raphson iteration scheme, Houbolt third order time
integration scheme) formulation based on the Galerkin method is implemented
in the commercial FE-package DIANA (DIANA Analysis B.V., Delft, the
Netherlands). For the numerical studies iso-parametric elements of the serendip-
ity family are used. Two dimensional (plane strain and plane stress), three
dimensional and axisymmetric elements have been developed. The interpolation
functions are the same for displacements, pressures and concentrations and can

be either linear or parabolic.



323

Geometry

For an axial compression load less than 1000 N the facet joints do not
contribute significantly to the load transmission (Adams and Hutton, 1980). As
the load which is used in the calculations is 650 N maximum the posterior
elements are neglected. For the sake of simplicity the remaining disc and
vertebra are approximated by an axi-symmetrical geometry. In fig. 1 the dimen-
sions of the modelled motion segment of the lower lumbar spine (L4-L5) are
given. For the disc and vertebra the gross dimensions are in agreement with the
anatomical data of Aharinejad et al. (1990), for the endplate Robert et al. (1989)
is used. The chosen geometry and its dimensions are comparable with Shirazi-
Adl (1989).

Six different tissue types are modelled: nucleus pulposus (NP), anulus
fibrosus (AF), cartilaginous endplate (CEP), bony endplate (BEP), cancellous
bone (CAB), and cortical bone (COB). The transverse areas of the nucleus and
the anulus are equal. The outer anulus area equals also the latter areas. Both
z=0 and the top are planes of symmetry. In fig. 1 the different areas and
materials are depicted.
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Fig. 1: The geometry and materials; the porosity (volume fraction of water) and
the fixed charge density as a function of radial distance are given. The dimen-
sions are in mm.

Material properties

The triphasic material behaviour of the tissue involves the stress-strain
relation, the permeability, the porosity, the proteoglycan conecentration or fixed
charge density (FCD), and the osmotic coefficient. Only the ’soft’ tissues are
supposed to be osmotically active. The radial profile of the FCD across the
nucleus and the anulus is given in fig. 1 (Urban and Maroudas, 1979). In the
axial direction a homogenous distribution is assumed. The radial profile of the
FCD in the CEP equals the one of the nucleus (Roberts et al., 1989). In the
axial direction of the CEP the FCD decreases linearly to the value in the CAB:
0.001*10° eq/m®. The porosity profile of the soft tissues has the same shape as
the FCD profile (Urban and Maroudas, 1979). For the cancellous bone a value
of 0.5 is used. As the cortical bone and the bony endplate are dense materials a
porosity of 0.01 is used. The osmotic coefficient is the same for all tissues and
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equals 2.1 kPa/(m’mol).

For all tissue types a linear relationship between the second Piola-
Kirchhoff stress and the Green-Lagrange strain is assumed. The bi- and triphasic
material properties are taken to be identical. The nucleus and the bony parts are
isotropic. The Young’s moduli and the Poisson’s ratios are listed in table 1. The
anulus fibrosus and the cartilaginous endplate are composed of a ground
substance with imbedded collagen fibres. Both tissues are viewed upon as a
homogenous mixture of matrix and fibres. Due to the orientation of the fibres
the mixture has direction dependent properties. A perfect bond between the
fibres and the matrix is assumed: The properties of the mixture are calculated
according to the rules given by Hashin and Rosen (1964). The initial parameters
needed are: the Young’s modulus, Poisson’s ratio, and the volume fraction of the
fibres, the Young’s modulus and the Poisson’s ratio of the matrix. The Young’s
modulus and volume fraction of the fibres increase almost linearly in radial
direction across the anulus. The volume fraction increases from 12.5% to 20.9%
(Brickley-Parsons and Glimcher, 1983), the Young’s modulus from 225 MPa to
595 MPa (Marchand and Ahmed, 1989). For the CEP values of 35% and 200
MPa are used. We found no experimental data for the Poisson’s ratio of the
fibres and assume a value of zero. A sensitivity analysis for fibre Poisson’s ratios
varying from 0 to 0.4 shows the following changes in the mixture (matrix + fibre)
properties after rotation to model axes: maximal 0.3% in the Young’s moduli and
maximal 15% in the Poisson’s ratios. The material constants are listed in table 1.

Young’s | Poisson’s ratio / | Permeability Porosity FCD’

modulus | fibre %

MPa -1/% 10" m*/Ns {1 10** eq/m’
NP 1.5 - 0.1/- 9.0 fig. 1 fig. 1
AF matrix 2.5 0.1/ 9.0 fig. 1 fig. 1
inner fibres 225 0.0/12.5
outer fibres 595 0.0/20.9
CEP matrix 2.5 0:1/- 27.0 fig. 1 fig. 1
fibres 200 0.0/35.0
BEP 50 0.3/- 0.01 0.01 0.001
CAB 100 0.3/ 1000.0 0.01 0.001
COB 10000 0.3/- 0.01 0.5 0.001

Table 1: Material constants for a human lumbar motion segment. The F(ixed)
C(harge) D(ensity) is defined as the number of equivalent (charge) moles per m’
H,O. ": the FCD is naturally used in the triphasic model only.

The fibres, arranged in lamellae, incline with respect to the transverse
plane. The angle changes from +a to -« from one layer to the other. A value of
30 degrees is used for the anulus fibres, while an angle of 10 degrees is used for
the cartilaginous endplate. With respect to a coordinate system aligned in the
fibre direction a transverse isotropic stress-strain relation SE(a) is obtained.
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Rotating this relationship to the global coordinate system yields a stress-strain
relation with coupling between shear stresses and normal strains. By combining
the contribution of a +a and a -« lamella according to SE = % (SE(a) + SE(-
a)) the coupling terms vanish. The resulting stress-strain relation is orthotropic in
the global coordinate system.

The simulation of an axial compression of the MS

The initial heights of the bi- and triphasic MS are taken to be identical.
Because the triphasic MS has a swelling tendency, a preload has to be applied in
order to keep its height identical to the biphasic height. The magnitude of this
load is calculated by fixing the MS to the predetermined height, letting it swell
until equilibrium is reached and calculating the axial force that is required to
keep it in place. In addition to this preload the actual load is applied. In the
biphasic case no preload is required and the simulation starts with the immediate
load application.
The conditions at the time of application of the actual load are:

biphasic triphasic
fluid pressure 0 MPa equals osmotic pressure
axial dimension 16 mm 16 mm
fibre stress 0 MPa prestressed
preload ON 150 N
The boundary conditions are:
biphasic triphasic
pressure 0 MPa equals osmotic pressure
displacements
at the base u =0 u =20

The axial displacements of the top nodes have been made identical by means of
tyings. The load is 650 N for both the models. The COB and BEP are modeled
impermeable. Hence, fluid flow is only possible through the NP, AF, CEP, and
CAB. '

Results

The results of the comparison between the bi- and triphasic models are
given in the form of decrease in height of the top versus time, total integrated
fluid flow versus time, fluid pressure and the fibre 2nd Piola Kirchhoff stresses in
the anulus fibres.

In fig. 2 the decrease in height of the top over time is given. The biphasic
height decrease is 16% more than in the triphasic case. Also, the triphasic
simulation reaches equilibrium after 8 h, while the biphasic simulation does not
even after 10 h. Total axial displacement is -1.055 mm in the triphasic simulation
and -1.225 mm in the biphasic simulation. ,

Fluid can flow out of the IVD through the end plate and the anulus.
Through the end plate the fluid flows into the cancellous bone and from there
into the blood vessels that run in large numbers through the vertebra. Through
the anulus fluid disappears into the interstitial spaces and can be absorbed by the
surrounding tissues. Fig. 3a shows a qualitative picture of the fluid flow, whilst in
fig. 3b the integrated flows are given. The total triphasic fluid loss is 28% smaller

(2o
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axial displacement (mm)

time (h)

Fig. 2: The decrease in height versus time for bi- and triphasic motion segments

VYolume flow (mm3)
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Fig. 3: a. Qualitative view of a fluid flow pattern through the MS. b. Integrated
flow versus time; solid line: biphasic; dashed line: triphasic.

than the biphasic loss (1215 mm?® versus 1557 mm?).

The fluid pressure along the anulus base for t = 50 s and t = 10 h is
given in fig. 4. The triphasic pressure is in both cases higher than the biphasic
one. After 10 h the biphasic pressure has almost reduced to zero (< .01 MPa),
while the triphasic pressure runs from 0.05 MPa (outermost anulus sheet) to 0.16
MPa (innermost anulus sheet). The maximum pressures in the nucleus are:

biphasic triphasic
initial 0 MPa 0.188 MPa
after 10 s 0.480 MPa 0.663 MPa

after 10 h 0.008 MPa 0.261 MPa



327

d\ 6 7
% N@c 508 triphasic 50 s
i ‘biphesic 50.3
03 biphasi |

-

2 4 6

pressure (MPa)
o
B
fibre stress (MPa)
@

'x\—-‘"ﬂ triphasic 10 5
o1 1 )
7| - biphasic 10 h 1
7 : ; : ; : ) biphasic 10h
2 4 .5 s
-0.05- . distance (mm)

distance (mm)

Fig. 4: Fluid pressure along the anulus base  Fig. 5: The 2nd Piola Kirchhoff
stress along the anulus base.

The fibre stress curves along the anulus base for different times are shown
in fig. 5. Initially, (after 50 s) the fibre stresses are largest. They decrease in time
and become negative ultimately. The triphasic stresses are higher than the
biphasic stresses. After 50 s the triphasic stress at the base at the anulus edge is
60% higher than the biphasic stress (4.8 MPa versus 3 MPa).

Summarizing we find that in an axial compression simulation of the
motion segment major differences occur in axial displacement (biphasic 16%
more than triphasic), expelled fluid volume versus time (after 10 h triphasic 28%
less), fluid pressure (at the base at the inner anulus after 50 s triphasic 26%
higher than biphasic), and fibre stress (at the base at the anulus edge after 50 s
triphasic 60% higher than biphasic). Although the triphasic simulation maintains
a higher fluid pressure, less water is expelled.

Conclusions and discussion

This study is to our knowledge the first to present a triphasic finite
element model of the intervertebral disc. The comparison of biphasic and
triphasic simulations shows that (1) the triphasic model holds on to more water
although the triphasic fluid pressure gradients are larger and (2) the anulus
tensile fibre stresses are larger in the triphasic computation compared to the
biphasic computation. The triphasic simulation loses less height (3) and reaches
equilibrium earlier (4).

In comparing the two models it is important to be aware of some funda-
mental differences between them. In both models it is possible for the structures
to attract water. The mechanisms by which this occurs are completely different.
In the biphasic model fluid can be imbibed because of the elasticity of the tissue.
In the triphasic case the attraction of fluid molecules has its origin in the osmotic
effect and the elasticity of the tissue. Because the osmotic force is deformation
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dependent through the dependency on the FCD, the biphasic model cannot be
simply adjusted by adding a simple term to the biphasic stiffness (to compensate
for the osmotic stiffness). A triphasic model is needed.

Berkson et al. (1979) measured fluid pressures in the nucleus in axial
compression experiments. They found that the nucleus pressure was 1.22
(compression load 400 N) to 1.99 (compression load 100 N) times the outer
applied load per unit surface of the IVD (the facet joints excised). For the
triphasic simulation this factor (P) is 1.87 initially (with the preload of 150 N). In
the loading stage shortly (10 s) after application of the load it is 1.24, and after
10 h it equals 1.10. In the biphasic experiment the values after 10 s and 10 h are,
respectively, 0.49 and 0.018.

There are three important conclusions to be drawn from these data: (1)
The factor P depends on the external load (experiment+simulation), (2) P is
dependent on time (simulation), and (3) P is greater than one in the triphasic
case and in the experiment, whilst it is smaller than one for the biphasic compu-
tation. This means that the biphasic maximum nucleus pressure is smaller than
the outer load per unit area of IVD. The reverse is true for the triphasic
computation and the experiments. There is good agreement between the
triphasic simulation and the experiment. One should bear in mind that the values
of P reported by Berkson et al. are based on in vitro measurements with 100
percent relative humidity conditions, and our simulations are done in a salt
solution with constant concentration. The values should be compared shortly
after application of the load (< 15 min) at which time the measurements in vitro
have been performed.

Although the triphasic fluid pressure is higher (fig. 4), less water is
expelled (fig. 3b). In short: the triphasic material holds on to more water at
higher pressures. This effect can be understood when we consider that the
driving force for fluid flow is the combined effect of concentration gradients and
pressure gradients (the continuity equation (1.2)).

The triphasic fibre stress is seen to be higher at all points in time, as is
shown in fig. 5 for t = 50 s and t = 10 h. The triphasic model would predict
earlier breakage of fibres than would the biphasic model. In time, the fibre
stresses decrease uniformly. This means that fibre breakage in this modelling
situation is most likely to occur directly after application of the load. It should be
noted that the fibre angle also determines the value of the stress (through
rotation of the stresses in the model axes), while the measured values show a
wide range (variation by as much as 35°), even in one individual fibre sheet
(Marchand and Ahmed, 1990). By choosing a smaller angle (than 30°) the
stresses will increase. Tensile Cauchy stress at failure of anulus specimens cut
along the fibre direction was found to be 8.8 + 1.1 MPa (n=18; Galante, 1967).

The comparison of radial deformation with experimental data is compli-
cated because of the influence of the preload (Panjabi and Krag, 1977), and the
time dependence of the axial deformation (fig. 2). Panjabi and Krag found
significant differences in radial deformation using 3 different preloads: 0, 400 and
1000 N and very small additional loads: up to 150 N. The axial deformation at a
load of 150 N with the different preloads lay in the range of -0.01 to -0.02 mm.
They also concluded that the effect of preload may be different for different
physiological loads. Their findings make it difficult for us to compare the
numerical results with 150 N preload and 650 N additional load with experimen-
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tal results without preload. Hirsch and Nachemson (1954) found a mean axial
displacement of -0.75 mm (n=94; -1.5 mm for the whole motion segment; our
axial displacement data are based on half of the MS) with a load of 1000 N. This
is smaller than our predicted values after 10 h. However, they measured after a
relatively short time (minutes) after the application of the load, while we find at
that point in time significant creep response in our simulation. Therefore, we
only give these results to get an indication of the order of magnitude.

Berkson et al. (1979) measured no-load intradiscal pressures and found a
mean value of 0.076 MPa (n=42) with the posterior elements (facet joints)
destroyed. In unloaded biphasic.material in which the pores are in open contact
with a fluid environment, the pore pressure necessarily goes to the pressure of
the environment. We did not model the unloaded situation, but in the preload
equilibrium situation the nucleus pressure ranges from 0.11 MPa to 0.19 MPa.
These values may be comparable with the experimental data of Berkson et al,
keeping in mind that the 150 N preload has a P factor of 1.9 for the pressure of
0.19 MPa and 1.1 for 0.11 MPa.
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