3,265 research outputs found

    Mobile integrated conditional access system

    Get PDF
    This paper presents design of a novel security architecture integrating mobile and broadcasting technologies in the Pay-TV system. The security architecture proposed herein is a state-of-the-art solution to tackle well-known problems challenging current Pay-TV systems including but not limited to interoperability amongst service providers, relatively high cost of the service deployment, the security compromise, limited interactivity and bespoken services offered to subscribers. It also proposes the Follow-me service that enables subscribers to access their entitlements via an arbitrary set-top box

    Generation of pcdna 3.1+-gh as a recombinant expression vector of ostrich growth hormone cdna in saccharomyces cerevisiae

    Get PDF
    Growth hormone is essential hormone for vertebrates like the ostrich (Struthio camelus) for growth stimulation, carbohydrate metabolism, protein assimilation etc. Growth hormone is secreted by the pituitary gland and expressed in many cells and tissues. The purpose of this study was generation of pcDNA 3.1+-GH recombinant expression vector in order to sub-clone ostrich growth hormone cDNA into Escherichia coli. In brief, total RNA was extracted from the pituitary gland tissue and cDNA sample was synthesised. The cDNA was amplified by PCR and revealed a 672 bp fragment on 2% agarose gel electrophoresis. Then, the ostrich growth hormone cDNA was extracted from the gel and was cloned into pCR8/GW/TOPO vector by T/A cloning technique to produce pCR8/GW/TOPO-GH. After obtaining the sequence of cDNA of the ostrich in Iran, it was submitted in GenBank (Accession number: JN559394). Finally, the GH cDNA was sub-cloned using pcDNA 3.1+ into Saccharomyces cerevisiae and pcDNA 3.1+-GH recombinant expression vector was generated. The results of present study were showed that ostrich growth hormone cDNA was successfully sub-cloned into Saccharomyces cerevisiae. Therefore, the pcDNA 3.1+-GH recombinant expression vector generated in this study could be useful to express the ostrich growth hormone in yeast cells as a simple and affordable way to produce this hormone at a large scale

    On the integration of early health technology assessment in the innovation process: reflections from five stakehol

    Get PDF
    Early health technology assessment (HTA), which includes all methods used to inform industry and other stakeholders about the potential value of new medical products in development, including methods to quantify and manage uncertainty, has seen many applications in recent years. However, it is still unclear how such early value assessments can be integrated into the technology innovation process. This commentary contributes to the discussion on the purposes early HTA can serve. Similarities and differences in the perspectives of five stakeholders (i.e., the hospital, the patient, the assessor, the medical device industry, and the policy maker) on the purpose, value, and potential challenges of early HTA are described. All five stakeholders agreed that integrating early HTA in the innovation process has the possibility to shape and refine an innovation, and inform research and development decisions. The early assessment, using a variety of methodologies, can provide insights that are relevant for all stakeholders but several challenges, for example, feasibility and responsibility, need to be addressed before early HTA can become standard practice. For early evaluations to be successful, all relevant stakeholders including patients need to be involved. Also, nimble, flexible assessment methods are needed that fit the dynamics of medical technology. Best practices should be shared to optimize both the innovation process and the methods to perform an early value assessment

    Combined Modality Approaches in the Management of Adult Glioblastoma

    Get PDF
    Over the past two decades, management of newly diagnosed glioblastoma has undergone significant evolution. While surgery has long been a mainstay of management for this disease, and while radiotherapy has a proven survival role, initial efforts at radiotherapy dose escalation, use of radiosurgery, brachytherapy, and altered fractionation did not improve patient survival. Recently, multiple modality therapy integrating maximal safe resection, postoperative radiation, and new systemic therapies have resulted in improved patient outcomes compared with older regimens utilizing surgery and postoperative radiation alone. Numerous trials are currently underway investigating the combination of surgery, radiation, and systemic therapy with targeted agents to find ways to further improve outcomes for adults with glioblastoma

    Relationships between diffusion parameters and phosphorus precipitation during the POCl3 diffusion process

    Get PDF
    The POCl3 diffusion process is still a common way to create the pn-junction of Si solar cells. Concerning the screen-printing process, it is necessary to find a compromise between low emitter recombination, low contact resistance and high lateral conductivity. The formation of a homogeneous emitter during the POCl3 diffusion process depends on several diffusion parameters, including duration, temperature and gas flow. This primarily controls the growth of the highly doped phosphosilicate glass (PSG) layer, which acts as a dopant source during the diffusion process. Detailed investigations of the PSG layer have shown a distinct correlation between the process gas flows and the composition of the PSG layer. Specifically, in this research we examine the influence of phosphorus precipitation at the PSG/Si interface. Furthermore, we show the influence of phosphorus precipitation during the pre-deposition phase on the passivation quality of the corresponding emitter. In a second step, we use the results to create emitters with a reduced density of phosphorus precipitates. In a last step, the optimized emitter structure was transferred to screen-printed solar cell processes, whereby efficiencies up to 19.4% abs. were achieved on monocrystalline p-type Cz material with full area Al-BSF rear side

    Role of nutrient-sensing taste 1 receptor (T1R) family members in gastrointestinal chemosensing

    Get PDF
    Luminal nutrient sensing by G-protein-coupled receptors (GPCR) expressed on the apical domain of enteroendocrine cells activates intracellular pathways leading to secretion of gut hormones that control vital physiological processes such as digestion, absorption, food intake and glucose homeostasis. The taste 1 receptor (T1R) family of GPCR consists of three members: T1R1; T1R2; T1R3. Expression of T1R1, T1R2 and T1R3 at mRNA and protein levels has been demonstrated in the intestinal tissue of various species. It has been shown that T1R2-T1R3, in association with G-protein gustducin, is expressed in intestinal K and L endocrine cells, where it acts as the intestinal glucose (sweet) sensor. A number of studies have demonstrated that activation of T1R2-T1R3 by natural sugars and artificial sweeteners leads to secretion of glucagon-like peptides 1&2 (GLP-1 and GLP-2) and glucose dependent insulinotropic peptide (GIP). GLP-1 and GIP enhance insulin secretion; GLP-2 increases intestinal growth and glucose absorption. T1R1-T1R3 combination co-expressed on the apical domain of cholecystokinin (CCK) expressing cells is a luminal sensor for a number of l-amino acids; with amino acid-activation of the receptor eliciting CCK secretion. This article focuses on the role of the gut-expressed T1R1, T1R2 and T1R3 in intestinal sweet and l-amino acid sensing. The impact of exploiting T1R2-T1R3 as a nutritional target for enhancing intestinal glucose absorption and gut structural maturity in young animals is also highlighte

    CSNL: A cost-sensitive non-linear decision tree algorithm

    Get PDF
    This article presents a new decision tree learning algorithm called CSNL that induces Cost-Sensitive Non-Linear decision trees. The algorithm is based on the hypothesis that nonlinear decision nodes provide a better basis than axis-parallel decision nodes and utilizes discriminant analysis to construct nonlinear decision trees that take account of costs of misclassification. The performance of the algorithm is evaluated by applying it to seventeen datasets and the results are compared with those obtained by two well known cost-sensitive algorithms, ICET and MetaCost, which generate multiple trees to obtain some of the best results to date. The results show that CSNL performs at least as well, if not better than these algorithms, in more than twelve of the datasets and is considerably faster. The use of bagging with CSNL further enhances its performance showing the significant benefits of using nonlinear decision nodes. The performance of the algorithm is evaluated by applying it to seventeen data sets and the results are compared with those obtained by two well known cost-sensitive algorithms, ICET and MetaCost, which generate multiple trees to obtain some of the best results to date. The results show that CSNL performs at least as well, if not better than these algorithms, in more than twelve of the data sets and is considerably faster. The use of bagging with CSNL further enhances its performance showing the significant benefits of using non-linear decision nodes
    corecore