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Abstract 

The POCl3 diffusion process is still a common way to create the pn-junction of Si solar cells. Concerning the screen-
printing process, it is necessary to find a compromise between low emitter recombination, low contact resistance and 
high lateral conductivity. The formation of a homogeneous emitter during the POCl3 diffusion process depends on 
several diffusion parameters, including duration, temperature and gas flow. This primarily controls the growth of the 
highly doped phosphosilicate glass (PSG) layer, which acts as a dopant source during the diffusion process. Detailed 
investigations of the PSG layer have shown a distinct correlation between the process gas flows and the composition 
of the PSG layer. Specifically, in this research we examine the influence of phosphorus precipitation at the PSG/Si 
interface. Furthermore, we show the influence of phosphorus precipitation during the pre-deposition phase on the 
passivation quality of the corresponding emitter. In a second step, we use the results to create emitters with a reduced 
density of phosphorus precipitates. In a last step, the optimized emitter structure was transferred to screen-printed 
solar cell processes, whereby efficiencies up to 19.4%abs. were achieved on monocrystalline p-type Cz material with 
full area Al-BSF rear side. 
 
© 2013 The Authors. Published by Elsevier Ltd.  
Selection and/or peer-review are the responsibility of the scientific committee of the SiliconPV 2013 
conference. 
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1. Introduction 

The electrical properties of emitters play an important role in increasing the efficiency of screen-
printed solar cells. In this context, it has been determined that the sheet resistance of an emitter alone does 
not permit a reliable conclusion about the performance of the emitter. In fact, the ratio between the active 
and the inactive phosphorus in the emitter influences both the emitter saturation current density and the 
contactability of the emitter in a screen-printing process. 
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The density of the inactive P in the emitter caused by P precipitation is strongly influenced by process 
parameters during the POCl3 diffusion process. Thereby process gases like POCl3-N2 and O2 play a 
significant role in the formation of the phosphosilicate glass (PSG) layer, which itself controls the emitter 
formation, particularly during the pre-deposition phase [1-3]. By a systematic investigation of the pre-
deposition phase, correlations have been found between process parameters and the phosphorus 
precipitation on the PSG/Si interface. The correlations between process parameters during pre-deposition 
and PSG characteristics lead also to more realistic boundary conditions for P diffusion used in process 
simulations [5-7]. In this work, a systematic investigation was carried out to adapt and optimize the 
emitter profile for an industrial-type screen-printing process. 

2. Analysis of the phosphosilicate glass layer (PSG) 

2.1. Materials and methods 

To systematically evaluate how the process parameters during the pre-deposition phase influence the 
formation of the PSG and the emitter, we used a design of experiment approach. For this purpose, we 
chose the Box-Behnken Design, which allows a significant reduction of the diffusion experiments [8]. 
Thereby, four process parameters  were systematically varied: duration, temperature, POCl3-N2 gas flow, 
and O2 gas flow. In this paper, we focus on the process parameter POCl3-N2 gas flow and the process 
temperature, which has a strong influence on the PSG and the emitter formation. The following PSG 
characteristics were measured with the following methods: 

 
 PSG thickness: Atomic Force Microscopy (AFM) & Ellipsometry 
 P-dose in PSG: Inductively Coupled Plasma  Optical Emission Spectroscopy (ICP-OES) 
 P-concentration profile in PSG: Glow Discharge  Optical Emission Spectroscopy (GD-OES) 

 
The samples used for this part of the study were (100) oriented boron doped float one (FZ) wafers 

(bulk resistivity RB = 2  μm. After the cleaning procedure, diffusion 
processes were carried out in a state of the art POCl3 diffusion furnace from Centrotherm. 

2.2. Results and discussion 

In the first part of the PSG analysis, the layer thickness of the PSG was determined, depending on the 
process parameters POCl3-N2 gas flow and temperature. Fig. 1 clarifies the influence of the two process 
parameters on the thickness of the PSG layer. 
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Fig. 1. PSG thickness as a function of POCl3-N2 gas flow and temperature during pre-deposition. It is apparent that not only the 

POCl3-N2 gas flow, but also the diffusion temperature has a strong influence on the thickness of the PSG layer. The increase in the 
POCl3-N2 gas flow leads to parabolic growth behavior in the PSG layer thickness. 

The second part of our PSG analysis is intended to answer the question of how the total dose of P in 
the PSG layer is influenced by the here-examined process parameters. For this purpose, the PSG layers 
were dissolved in diluted HF solution and the total number of P-atoms in the solution was quantitatively 
analyzed using ICP-OES. 
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Fig. 2. P dose in PSG as a function of POCl3-N2 gas flow and temperature during pre-deposition, measured with ICP-OES. 

Fig. 2 clearly shows a linear development of the P dose in dependence on the POCl3-N2 gas flow. 
Likewise, an increase in temperature leads to an increase in the P dose in the PSG layer. Thereby we note 
that the influence of the temperature increases with increased POCl3-N2 gas flow. We assume that both 
process parameters have a significant influence on the formation and thereby on the density of the PxOy in 
the PSG layer. 

These measurements allow us to evaluate the average P concentration in the PSG layer. Through a 
precise specification of the PSG layer thickness and the P dose in the PSG layer, QPSG, the P 
concentration can be determined using  

 
,        (1) 
 

depending on the POCl3-N2 gas flow and the process temperature. 
PSG

PSG
meanPSG Thickness

QC ,



 Amir Dastgheib-Shirazi et al.  /  Energy Procedia   38  ( 2013 )  254 – 262 257

200 400 600 800 1000 1200 1400
4

5

6

7

8

9

10

11

12

 

 T = 840°C
 T = 880°C
 + additional Drive-In

M
ea

n 
P

-C
on

ce
nt

ra
tio

n 
(P

S
G

) [
10

21
 c

m
-3
]

POCl3-N2 gasflow [sccm]  
Fig. 3. Average P concentration in the PSG layer determined from the P dose in the PSG and the PSG layer thickness using Eq. (1). 

Fig. 3 shows that the average P concentration increases rather weakly with higher POCl3-N2 gas flow. 
An increase in the pre-deposition temperature leads to a drop in the average P concentration, whereby 
with a very high POCl3-N2 gas flow this effect appears to be stronger. The explanation for this is probably 
that, at a higher process temperature, the diffusivity of P increases on the PSG-Si interface and thereby in 
the same time significantly more P diffuses from the PSG layer into the Si substrate. With a high POCl3-
N2 gas flow and constant O2 gas flow, however, we suspect also a restructuring of the PSG layer, whereby 
the diffusivity of the P on the PSG-Si interface is significantly influenced. In Fig. 3 we see quite clearly 
that with an additional drive-in without the POCl3-N2 gas flow, the medium P concentration in the PSG is 
reduced by ca. 30%rel.. 

In the next experiment, the P concentration in the PSG layer is determined by means of GD-OES. This 
yields the layer structure of the PSG. How it depends on the POCl3-N2 gas flow during pre-deposition is 
demonstrated in Fig. 4. 
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Fig. 4. Depth profile of P, O and Si concentrations in PSG and Si for (a) low POCl3-N2 gas flow = 250 sccm, and (b)  high POCl3-N2 
gas flow = 1500 sccm, measured with GD-OES. 

Fig. 4 shows the developments of the P, O and Si concentrations in the PSG layer for a low (250 sccm, 
left) and high POCl3-N2 gas flow (1500 sccm, right). The two diagrams suggest that the PSG may be 
subdivided into three different sublayers [4]. In the sublayer I, the P concentration  appears to be rather 
independent of depth.  The increase in the POCl3-N2 gas flow leads to a higher P concentration in 
sublayer I, but has a decisive influence on the developments of sublayers II and III in the PSG layer. For 
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the low POCl3-N2 gas flow in the left-hand diagram, in PSG section II a much stronger gradient of the P 
concentration was measured. In sublayer III, and thereby on the PSG-Si interface, an increase in the P 
concentration takes place. In this sublayer, the influence of the process gas POCl3-N2 is most clearly 
apparent. Here the increase of the POCl3-N2 gas flow leads to a strong increase in the P concentration at 
the PSG-Si interface. We assume that the high POCl3-N2 gas flow leads to a stronger precipitate 
formation at the Si surface. These less mobile P precipitates probably lead to a stronger accumulation of P 
on the PSG-Si interface in particular under high POCl3-N2 gas flow condition during pre-deposition. 
Furthermore, the two graphs show that a certain amount of O from the PSG seems to diffuse into the Si 
substrate. This indicates that the PSG serves not only as a diffusion source for P but as well for O. 

3. Emitter analysis 

3.1. Materials and methods 

After the PSG analysis, we now consider the influence of the POCl3-N2 gas flow on emitter formation 
in silicon. For the following experiments we used boron doped FZ wafers (RB = 2 or 200 
a thickness of 250 μm. For emitter characterization, the following characterization methods have been 
used. 
 Electrically active P: Electrochemical Capacitance Voltage (ECV) 
 Chemical P concentration: Secondary Ion Mass Spectrometry (SIMS) 
 j0E and implied Voc: Quasi-Steady-State Photoconductance QSSPC 

3.2. Results and discussion 

In the first step, we observed the influence of the POCl3-N2 gas flow variation during the pre-
deposition on the P concentration profile in Si. To illustrate the effect of P precipitation as a function of 
the POCl3-N2 gas flow we focused on the differences between the electrically active and total P 
concentrations on the Si interface as measured by ECV and SIMS. 
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Fig. 5. (a) Total P concentration profile in Si as a function of the POCl3-N2 gas flow (b) Concentration profile of the electrically 

active P in Si as a function of the POCl3-N2 gas flow 

Figure 5 (a) shows the development of the total chemical P concentration in Si as a function of the 
POCl3-N2 gas flow. Thereby the increase in the POCl3-N2 gas flow causes a strong increase in P 
concentration, above all at the Si surface. Figure 5 (b) shows the development of the concentration of the 
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electrically active P in the Si. Here it is apparent that the increase in the POCl3-N2 gas flow leads to no 
significant increase in the maximum surface concentration of the electrically active P concentration in the 
Si substrate. In this case, the maximum concentration of the electrically active P (3 1020 cm-3) is achieved 
due to the solubility limit of P in Si [3, 9, 10]. 

By comparing the maximum surface concentrations of the two measurement methods in Fig. 6, we can 
determine the POCl3-N2 gas flow range up to which P precipitate formation does not occur in the Si 
substrate: it is rather low, about 250 sccm. 
 

250 500 750 1000 1250 1500
0

1

2

3

4

5

6

7

 Total amount of phosphorus (SIMS)
 Electrical active phosphorus (ECV)

 

P
-d

os
e 

in
 s

ili
co

n 
[1

015
 c

m
-2
]

POCl3-N2-gas flow [sccm]  
Fig. 6. Comparison of electrically active and total P dose in Si as a function of POCl3-N2 gas flow during pre-deposition 

To determine the influence of the precipitate formation as a function of the POCl3-N2 gas flow on the 
emitter saturation current density j0E and implied Voc, the emitters on both wafer surfaces were passivated 
using plasma-enhanced chemical vapor deposition (PECVD) SiNx and j0E was measured with the method 
of Kane and Swanson [11]. 
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Fig 7. (a) QSSPC measurements of symmetrically passivated emitters (b) Evaluation of j0E  (injection level 1016 cm-3) and implied 

Voc (injection level 1015 cm-3) as a function of POCl3-N2 gas flow during pre-deposition 

Fig. 7 shows how j0E decreases strongly with declining POCl3-N2 gas flow. Likewise, the measurement 
of the implied Voc shows that already a moderate reduction of the POCl3-N2 gas flow during the 
deposition phase leads to a significant increase in implied Voc values. 

As already noted, this strong reduction of the j0E value is not attributable to the maximal concentration 
of the electrically active P in Si and, hence, Auger recombination losses. Rather, the electrically inactive 
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P, which precipitates as P at the Si surface and is also present in the Si volume, appears to be one of the 
decisive factors for an increased SRH recombination in the emitter region. 

An important aspect with the adaptation of the process parameters during POCl3 diffusion is, however, 
the contactability of the emitter in a screen-printing process. As we could already see in the ECV profiles 
in Fig. 5, a moderate reduction of the POCl3-N2 gas flow causes no significant change in emitter sheet 
resistance. Thereby in any case the lateral conductivity of the emitter is assured in a solar cell process. 

s contact resistance changes with a 
reduction in the POCl3-N2 gas flow. 

4. Solar cell results 

Based on the previous results, it is possible to adjust the POCl3-N2 gas flow such that the density of P 
precipitates is strongly reduced in the emitter surface region. By reducing the surface concentration of the 
inactive P, we can significantly reduce emitter recombination without significantly increasing the emitter 
sheet resistance. The aim of the following solar cell process is to investigate how far the reduction of the 
density of the P precipitates influences the contact formation, in particular using the screen-printing 
metallization procedure. For screen-printing metallization technology, we must ensure low contact 
resistivity between the metal-semiconductor contacts. With a combination of high lateral conductivity and  
excellent ohmic contacts a high fill factor  80% can be achieved. 

To verify the potential of optimized homogeneous emitters of the previous results, screen printed solar 
cells with full area Al-BSF and homogeneous emitter were fabricated on 160 μm thick boron doped 
Cz-Si material with a base resistivity of approximately 2.5 The solar cells have a 3-busbar front 
grid; the backside contact was realized by a full area Al-BSF using screen-printing without rear busbars. 
The front-side was passivated with a PECVD SiNx. Both emitters employed here have the same surface 
doping of Ns > 3 1020 cm-3and a sheet resistance of about 55 However, they differ in the surface 
concentration of the inactive P. 

Table 1. Comparison of electrical parameters and internal quantum efficiencies of solar cells with standard and optimized 
homogeneous emitters 

 jsc [mA/cm²] Voc [mV] FF [%]  Mean IQE (350 550 nm) 

Emitter A (reduced P precipitates) 37.6 643 80.1 19.4 0.92 
Emitter B 36.9 633 79.7 18.6 0.89 

 
In Table 1, the I-V parameters and the mean internal quantum efficiencies (350 <  < 550 nm) of the 

solar cells are represented with a standard emitter and an optimized emitter. By a slight adjustment of the 
POCl3-N2 gas flow during the pre-deposition phase, an increase in jsc of 0.7 mA/cm², and an increase in 
Voc of up to 10 mV were obtained. Spectral response measurements show a gain in the internal quantum 
efficiency of the optimized emitter in the short wavelength region. Due to the constant level of the fill 
factor, a gain in efficiency of 0.8%abs was achieved. Through the reduction of the POCl3-N2 gas flow 
during pre-deposition, we could thereby achieve an efficiency level of up to 19.4% with a homogeneous 
emitter and a full area Al-BSF, while keeping the same contactability characteristics.. 

To investigate the influence of the electrically active and inactive P on the contact resistivity of the 
presented emitters in a screen-printing procedure, the transfer length method (TLM) was additionally 
used. 
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Table 2. Comparison of the contact resistance with maximal P concentration and 20 cm-3) of a standard and 
optimized homogeneous emitter 

 c  Cmax, SIMS [cm-3] Cmax, ECV [cm-3] dPlateau, SIMS [nm] dPlateau, ECV [nm] 

Emitter A _(reduced P precipitates) 1.2 ± 0.2 4.5 20 2.0 20 48 40 
Emitter B 0.9 ± 0.2 6.3 20 2.0 20 60 44 

 
Table 2 contrasts the contact resistivities measured by TLM. It becomes clear that for a satisfactory 

contacting of a screen-printed solar cell, information on the electrically inactive P concentration plays a 
decisive role. Thereby, with this diffusion process it could be determined that the emitter should have a 
minimal surface concentration of the inactive P ~6 1020 cm-3 and a minimal plateau depth of the 
electrically inactive phosphorous of ~60 nm in order to achieve acceptable contact resistance for the 
screen-printing process. 

5. Conclusions 

In this study, first the influence of the process parameters POCl3-N2 gas flow and process temperature 
during POCl3 diffusion on the PSG formation was investigated. By measuring the P concentration in the 
PSG layer, it was determined that an increase in POCl3-N2 gas flow leads to a stronger accumulation of P 
on the PSG-Si interface. Furthermore, it was also shown that the PSG can not only serve as a diffusion 
source of P, but also as a source for diffusion of O into Si. This fact may also be responsible for the 
additional precipitate formation in the Si substrate. The increase in the POCl3-N2 gas flow during pre-
deposition clearly leads to a increased P precipitate formation on the emitter surface and in the emitter 
volume, which was confirmed by comparing ECV with SIMS measurements. This P precipitate 
formation, which is strongly influenced by the POCl3-N2 gas flow, has a decisive influence on the 
recombination activity of the emitter. In the last part of this work, the thereby acquired knowledge about 
the P precipitation was transferred to a screen-printing solar cell process. On the one hand, the efficiency 
potential of a so-optimized emitter could be increased by 0.8%abs to 19.4%; on the other hand, by means 
of TLM it was possible to link the contactability of this emitter with the previous emitter analysis. 
Thereby correlations and limits of the contactability of such an optimized emitter could also be shown. 
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