128 research outputs found

    Fatigue Life Prediction of Welded Joint by Microstructure-based Simulation

    Get PDF
    This paper proposes a numerical framework to predict fatigue life on welded joints by integrating several computational techniques. The framework consists of five steps: i) materials properties estimation; ii) welding simulation using thermo-mechanical finite element method; iii) macroscopic stress field analysis under cyclic loading; iv) mesoscopic stress field analysis using crystal plasticity finite element method (CPFEM); v) analysis of fatigue crack growth. The total number of cycles to failure is eventually obtained by the sum of initiation life calculated by CPFEM and propagation life calculated by X-FEM. A fatigue life of butt joint is evaluated by the proposed method. The results demonstrated the possibility of evaluating the fatigue life and its scattering by the proposed framework

    Ice core records of monoterpene- and isoprene-SOA tracers from Aurora Peak in Alaska since 1660s: Implication for climate change variability in the North Pacific Rim

    Get PDF
    Monoterpene and isoprene secondary organic aerosol (SOA) tracers are reported for the first time in an Alaskan ice core to better understand the biological source strength before and after the industrial revolution in the Northern Hemisphere. We found significantly high concentrations of monoterpene- and isoprene-SOA tracers (e.g., pinic, pinonic, and 2-methylglyceric acids, 2-methylthreitol and 2-methylerythritol) in the ice core, which show historical trends with good correlation to each other since 1660s. They show positive correlations with sugar compounds (e.g., mannitol, fructose, glucose, inositol and sucrose), and anti-correlations with alpha-dicarbonyls (glyoxal and methylglyoxal) and fatty acids (e.g., C-18:1) in the same ice core. These results suggest similar sources and transport pathways for monoterpene- and isoprene-SOA tracers. In addition, we found that concentrations of C-5-alkene triols (e.g., 3-methyl-2,3,4-trihydroxy-1-butene, cis-2-methyl 1,3,4-trihydroxy-1-butene and trans-2-methyl-1,3,4-trihydroxy-1-butene) in the ice core have increased after the Great Pacific Climate Shift (late 1970s). They show positive correlations with a-dicarbonyls and fatty acids (e.g., C-18:1) in the ice core, suggesting that enhanced oceanic emissions of biogenic organic compounds through the marine boundary layer are recorded in the ice core from Alaska. Photochemical oxidation process for these monoterpene- and isoprene-/sesquiterpene-SOA tracers are suggested to be linked with the periodicity of multi-decadal climate oscillations and retreat of sea ice in the Northern Hemisphere. (C) 2015 Elsevier Ltd. All rights reserved

    Lake ice formation processes and thickness evolution at Lake Abashiri, Hokkaido, Japan

    Get PDF
    第6回極域科学シンポジウム[OM] 極域気水圏11月16日(月) 国立極地研究所1階交流アトリウ

    Recent climatic change of Alaska (1724-2008) record from Aurora Peak ice core, central Alaska

    Get PDF
    第3回極域科学シンポジウム/第35回極域気水圏シンポジウム 11月29日(木) 国立国語研究所 2階多目的

    Historical trends of biogenic SOA tracers in an ice core from Kamchatka Peninsula

    Get PDF
    Biogenic secondary organic aerosol (SOA) is ubiquitous in the Earth’s atmosphere, influencing climate and air quality. However, the historical trend of biogenic SOA is not well known. Here, we report for the first time the major isoprene- and monoterpene-derived SOA tracers preserved in an ice core from the Kamchatka Peninsula. Significant variations are recorded during the past 300 years with lower concentrations in the early-to-middle 19th century and higher concentrations in the preindustrial period and the present day. We discovered that isoprene SOA tracers were more abundant in the preindustrial period than the present day, while monoterpene SOA tracers stay almost unchanged. The causes of the observed variability are complex, depending on atmospheric circulation, changes in emissions, and other factors such as tropospheric oxidative capacity. Our data presents an unprecedented opportunity to shed light on the formation, evolution, and fate of atmospheric aerosols and to constrain the uncertainties associated with modeling their atmospheric concentrations

    Carbonaceous aerosol tracers in ice-cores record multi-decadal climate oscillations

    Get PDF
    Carbonaceous aerosols influence the climate via direct and indirect effects on radiative balance. However, the factors controlling the emissions, transport and role of carbonaceous aerosols in the climate system are highly uncertain. Here we investigate organic tracers in ice cores from Greenland and Kamchatka and find that, throughout the period covered by the records (1550 to 2000 CE), the concentrations and composition of biomass burning-, soil bacterial- and plant wax- tracers correspond to Arctic and regional temperatures as well as the warm season Arctic Oscillation (AO) over multi-decadal time-scales. Specifically, order of magnitude decreases (increases) in abundances of ice-core organic tracers, likely representing significant decreases (increases) in the atmospheric loading of carbonaceous aerosols, occur during colder (warmer) phases in the high latitudinal Northern Hemisphere. This raises questions about causality and possible carbonaceous aerosol feedback mechanisms. Our work opens new avenues for ice core research. Translating concentrations of organic tracers (μg/kg-ice or TOC) from ice-cores, into estimates of the atmospheric loading of carbonaceous aerosols (μg/m(3)) combined with new model constraints on the strength and sign of climate forcing by carbonaceous aerosols should be a priority for future research

    Relation between annual accumulation reconstructed from ice cores at Alaskan alpine glaciers and Pacific Climate Shift

    Get PDF
    第3回極域科学シンポジウム/第35回極域気水圏シンポジウム 11月29日(木) 国立国語研究所 2階多目的

    Physical properties of the Dome Fuji deep ice core (review)

    Get PDF
    Recent results of physical analyses of the Dome Fuji ice core are summarized with special attention to new methods introduced in the present studies. Microphysical processes which affect the ice core records are reviewed to better understand the paleoclimatic and paleoenvironmental signals stored
    corecore