32 research outputs found

    MUC1-C drives myeloid leukaemogenesis and resistance to treatment by a survivin-mediated mechanism

    Get PDF
    Acute myeloid leukaemia (AML) is an aggressive haematological malignancy with an unmet need for improved therapies. Responses to standard cytotoxic therapy in AML are often transient because of the emergence of chemotherapy-resistant disease. The MUC1-C oncoprotein governs critical pathways of tumorigenesis, including self-renewal and survival, and is aberrantly expressed in AML blasts and leukaemia stem cells (LSCs). However, a role for MUC1-C in linking leukaemogenesis and resistance to treatment has not been described. In this study, we demonstrate that MUC1-C overexpression is associated with increased leukaemia initiating capacity in an NSG mouse model. In concert with those results, MUC1-C silencing in multiple AML cell lines significantly reduced the establishment of AML in vivo. In addition, targeting MUC1-C with silencing or pharmacologic inhibition with GO-203 led to a decrease in active β-catenin levels and, in-turn, down-regulation of survivin, a critical mediator of leukaemia cell survival. Targeting MUC1-C was also associated with increased sensitivity of AML cells to Cytarabine (Ara-C) treatment by a survivin-dependent mechanism. Notably, low MUC1 and survivin gene expression were associated with better clinical outcomes in patients with AML. These findings emphasize the importance of MUC1-C to myeloid leukaemogenesis and resistance to treatment by driving survivin expression. Our findings also highlight the potential translational relevance of combining GO-203 with Ara-C for the treatment of patients with AML

    Genome-wide mapping of IBD segments in an Ashkenazi PD cohort identifies associated haplotypes

    Get PDF
    The recent series of large genome-wide association studies in European and Japanese cohorts established that Parkinson disease (PD) has a substantial genetic component. To further investigate the genetic landscape of PD, we performed a genome-wide scan in the largest to date Ashkenazi Jewish cohort of 1130 Parkinson patients and 2611 pooled controls. Motivated by the reduced disease allele heterogeneity and a high degree of identical-by-descent (IBD) haplotype sharing in this founder population, we conducted a haplotype association study based on mapping of shared IBD segments. We observed significant haplotype association signals at three previously implicated Parkinson loci: LRRK2 (OR = 12.05, P = 1.23 x 10(-56)), MAPT (OR = 0.62, P = 1.78 x 10(-11)) and GBA (multiple distinct haplotypes, OR \u3e 8.28, P = 1.13 x 10(-11) and OR = 2.50, P = 1.22 x 10(-9)). In addition, we identified a novel association signal on chr2q14.3 coming from a rare haplotype (OR = 22.58, P = 1.21 x 10(-10)) and replicated it in a secondary cohort of 306 Ashkenazi PD cases and 2583 controls. Our results highlight the power of our haplotype association method, particularly useful in studies of founder populations, and reaffirm the benefits of studying complex diseases in Ashkenazi Jewish cohorts

    Genetic markers of Restless Legs Syndrome in Parkinson disease

    Full text link
    INTRODUCTION: Several studies proposed that Restless Legs Syndrome (RLS) and Parkinson disease (PD) may be clinically and/or etiologically related. To examine this hypothesis, we aimed to determine whether the known RLS genetic markers may be associated with PD risk, as well as with PD subtype. METHODS: Two case-control cohorts from Tel-Aviv and New-York, including 1133 PD patients and 867 controls were genotyped for four RLS-related SNPs in the genes MEIS1, BTBD9, PTPRD and MAP2K5/SKOR1. The association between genotype, PD risk and phenotype was tested using multivariate regression models. RESULTS: None of the tested SNPs was significantly associated with PD risk, neither in any individual cohort nor in the combined analysis after correction for multiple comparisons. The MAP2K5/SKOR1 marker rs12593813 was associated with higher frequency of tremor in the Tel-Aviv cohort (61.0% vs. 46.5%, p = 0.001, dominant model). However, the risk allele for tremor in this gene has been associated with reduced RLS risk. Moreover, this association did not replicate in Tremor-dominant PD patients from New-York. CONCLUSION: RLS genetic risk markers are not associated with increased PD risk or subtype in the current study. Together with previous genetic, neuropathological and epidemiologic studies, our results further strengthen the notion that RLS and PD are likely to be distinct entities

    GBA mutations are associated with Rapid eye movement sleep behavior disorder

    Get PDF
    Rapid eye movement sleep behavior disorder and GBA mutations are both associated with Parkinson’s disease. The GBA gene was sequenced in idiopathic rapid eye movement sleep behavior disorder patients (n = 265), and compared to controls (n = 2240). Rapid eye movement sleep behavior disorder questionnaire was performed in an independent Parkinson’s disease cohort (n = 120). GBA mutations carriers had an OR of 6.24 (10.2% in patients vs. 1.8% in controls, P < 0.0001) for rapid eye movement sleep behavior disorder, and among Parkinson’s disease patients, the OR for mutation carriers to have probable rapid eye movement sleep behavior disorder was 3.13 (P = 0.039). These results demonstrate that rapid eye movement sleep behavior disorder is associated with GBA mutations, and that combining genetic and prodromal data may assist in identifying individuals susceptible to Parkinson’s disease

    Functional Analysis of the Aurora Kinase A Ile31 Allelic Variant in Human Prostate1

    Get PDF
    Overexpression of the centrosome-associated serine/threonine kinase Aurora Kinase A (AURKA) has been demonstrated in both advanced prostate cancer and high-grade prostatic intraepithelial neoplasia lesions. The single-nucleotide polymorphism T91A (Phe31Ile) has been implicated in AURKA overexpression and has been suggested as a low-penetrance susceptibility allele in multiple human cancers, including prostate cancer. We studied the transcriptional consequences of the AURKA Ile31 allele in 28 commercial normal prostate tissue RNA samples (median age, 27 years). Significant overexpression of AURKA was demonstrated in homozygous and heterozygous AURKA Ile31 prostate RNA (2.07-fold and 1.93-fold, respectively; P < .05). Expression levels of 1509 genes differentiated between samples homozygous for Phe31 alleles and samples homozygous for Ile31 alleles (P = .05). Gene Ontology classification revealed overrepresentation of cell cycle arrest, ubiquitin cycle, antiapoptosis, and angiogenesis-related genes. When these hypothesis-generating results were subjected to more stringent statistical criteria, overexpression of a novel transcript of the natural killer tumor recognition sequence (NKTR) gene was revealed and validated in homozygous Ile31 samples (2.6-fold; P < .05). In summary, our data suggest an association between the AURKA Ile31 allele and an altered transcriptome in normal non-neoplastic prostates

    Novel variants in genes related to vesicle-mediated-transport modify Parkinson's disease risk

    No full text
    Objectives: VPS35 and VPS13 have been associated with Parkinson's disease (PD), and their shared phenotype in yeast when reduced in function is abnormal vacuolar transport. We aim to test if additional potentially deleterious variants in other genes that share this phenotype can modify the risk for PD. Methods: 77 VPS and VPS-related genes were analyzed using whole-genome-sequencing data from 202 PD patients of Ashkenazi Jewish (AJ) ancestry. Filtering was done based on quality and functionality scores. Ten variants in nine genes were further genotyped in 1200 consecutively recruited unrelated AJ-PD patients, and allele frequencies and odds ratio calculated compared to gnomAD-AJ-non-neuro database, in un-stratified (n&nbsp;=&nbsp;1200) and stratified manner (LRRK2-G2019S-PD patients (n&nbsp;=&nbsp;145), GBA-PD patients (n&nbsp;=&nbsp;235), and non-carriers of these mutations (NC, n&nbsp;=&nbsp;787)). Results: Five variants in PIK3C3, VPS11, AP1G2, HGS and VPS13D were significantly associated with PD-risk. PIK3C3-R768W showed a significant association in an un-stratified (all PDs) analysis, as well as in stratified (LRRK2, GBA, and NC) analyses (Odds ratios&nbsp;=&nbsp;2.71, 5.32, 3.26. and 2.19 with p&nbsp;=&nbsp;0.0015, 0.002, 0.0287, and 0.0447, respectively). AP1G2-R563W was significantly associated in LRRK2-carriers (OR&nbsp;=&nbsp;3.69, p&nbsp;=&nbsp;0.006) while VPS13D-D2932N was significantly associated in GBA-carriers (OR&nbsp;=&nbsp;5.45, p&nbsp;=&nbsp;0.0027). VPS11-C846G and HGS-S243Y were significantly associated in NC (OR&nbsp;=&nbsp;2.48 and 2.06, with p&nbsp;=&nbsp;0.022 and 0.0163, respectively). Conclusions: Variants in genes involved in vesicle-mediated protein transport and recycling pathways, including autophagy and mitophagy, may differentially modify PD-risk in LRRK2-carriers, GBA carriers, or NC. Specifically, PIK3C3-R768W is a PD-risk allele, with the highest effect size in LRRK2-G2019S carriers. These results suggest oligogenic effect that may depends on the genetic background of the patient. An unbiased burden of mutations approach in these genes should be evaluated in additional PD and control groups. The mechanisms by which these novel variants interact and increase PD-risk should be researched in depth for better tailoring therapeutic intervention for PD prevention or slowing disease progression
    corecore