6 research outputs found

    Bereziskii-Kosterlitz-Thouless transition in the Weyl system \ce{PtBi2}

    Full text link
    Symmetry breaking in topological matter became, in the last decade, a key concept in condensed matter physics to unveil novel electronic states. In this work, we reveal that broken inversion symmetry and strong spin-orbit coupling in trigonal \ce{PtBi2} lead to a Weyl semimetal band structure, with unusually robust two-dimensional superconductivity in thin fims. Transport measurements show that high-quality \ce{PtBi2} crystals are three-dimensional superconductors (Tc≃T_\text{c}\simeq 600~mK) with an isotropic critical field (Bc≃B_\text{c}\simeq 50~mT). Remarkably, we evidence in a rather thick flake (60~nm), exfoliated from a macroscopic crystal, the two-dimensional nature of the superconducting state, with a critical temperature Tc≃370T_\text{c}\simeq 370~mK and highly-anisotropic critical fields. Our results reveal a Berezinskii-Kosterlitz-Thouless transition with TBKT≃310T_\text{BKT}\simeq 310~mK and with a broadening of Tc due to inhomogenities in the sample. Due to the very long superconducting coherence length ξ\xi in \ce{PtBi2}, the vortex-antivortex pairing mechanism can be studied in unusually-thick samples (at least five times thicker than for any other two-dimensional superconductor), making \ce{PtBi2} an ideal platform to study low dimensional superconductivity in a topological semimetal

    Diffusion inter-cônes des fermions de Weyl induite par le désordre dans WTe2_2

    No full text
    International audienceThe finite coupling between Weyl nodes due to residual disorder is investigated by magnetotransport studies in WTe2_2. The anisotropic scattering of quasiparticles is evidenced from classical and quantum transport measurements. A new theoretical approach using a real band structure is developed to calculate the dependence of the scattering anisotropy with the correlation length of the disorder. A comparison between theory and experiments reveals for the first time a short correlation length in WTe2_2 (ξ\xi~5nm). This result implies a significant coupling between Weyl nodes and other bands, so that inter-node scattering strongly reduces topologically non-trivial properties, such as the chiral anomaly.Le couplage résiduel entre deux cônes de Weyl de chiralité opposée, dû au désordre, est étudié par des mesures de magnéto-transport dans des films minces WTe2_2. La diffusion anisotrope des quasi-particules est mise en évidence par une comparaison entre le libre parcours moyen élastique et la longueur de transport. Un modèle basé sur la structure de bande précise de WTe2 permet de déterminer la longueur de corrélation du désordre, à partir de la mesure expérimentale de l'anisotropie de diffusion. Cette valeur, très courte (~5nm), suggère un fort couplage entre paires de cônes de Weyl, ce qui devrait fortement réduire l'amplitude de propriétés topologiques, telle que l'anomalie chirale

    Transition Bereziskii-Kosterlitz-Thouless dans des nanostructures du semimétal de Weyl \ce{PtBi2}

    No full text
    Symmetry breaking in topological matter became, in the last decade, a key concept in condensed matter physics to unveil novel electronic states. In this work, we reveal that broken inversion symmetry and strong spin-orbit coupling in trigonal \ce{PtBi2} lead to a Weyl semimetal band structure, with unusually robust two-dimensional superconductivity in thin fims. Transport measurements show that high-quality \ce{PtBi2} crystals are three-dimensional superconductors (Tc≃T_\text{c}\simeq 600~mK) with an isotropic critical field (Bc≃B_\text{c}\simeq 50~mT). Remarkably, we evidence in a rather thick flake (60~nm), exfoliated from a macroscopic crystal, the two-dimensional nature of the superconducting state, with a critical temperature Tc≃370T_\text{c}\simeq 370~mK and highly-anisotropic critical fields. Our results reveal a Berezinskii-Kosterlitz-Thouless transition with TBKT≃310T_\text{BKT}\simeq 310~mK and with a broadening of Tc due to inhomogenities in the sample. Due to the very long superconducting coherence length ξ\xi in \ce{PtBi2}, the vortex-antivortex pairing mechanism can be studied in unusually-thick samples (at least five times thicker than for any other two-dimensional superconductor), making \ce{PtBi2} an ideal platform to study low dimensional superconductivity in a topological semimetal

    Transition Bereziskii-Kosterlitz-Thouless dans des nanostructures du semimétal de Weyl \ce{PtBi2}

    No full text
    Symmetry breaking in topological matter became, in the last decade, a key concept in condensed matter physics to unveil novel electronic states. In this work, we reveal that broken inversion symmetry and strong spin-orbit coupling in trigonal \ce{PtBi2} lead to a Weyl semimetal band structure, with unusually robust two-dimensional superconductivity in thin fims. Transport measurements show that high-quality \ce{PtBi2} crystals are three-dimensional superconductors (Tc≃T_\text{c}\simeq 600~mK) with an isotropic critical field (Bc≃B_\text{c}\simeq 50~mT). Remarkably, we evidence in a rather thick flake (60~nm), exfoliated from a macroscopic crystal, the two-dimensional nature of the superconducting state, with a critical temperature Tc≃370T_\text{c}\simeq 370~mK and highly-anisotropic critical fields. Our results reveal a Berezinskii-Kosterlitz-Thouless transition with TBKT≃310T_\text{BKT}\simeq 310~mK and with a broadening of Tc due to inhomogenities in the sample. Due to the very long superconducting coherence length ξ\xi in \ce{PtBi2}, the vortex-antivortex pairing mechanism can be studied in unusually-thick samples (at least five times thicker than for any other two-dimensional superconductor), making \ce{PtBi2} an ideal platform to study low dimensional superconductivity in a topological semimetal

    Berezinskii–Kosterlitz–Thouless Transition in the Type‑I Weyl Semimetal PtBi<sub>2</sub>

    No full text
    Symmetry breaking in topological matter has become in recent years a key concept in condensed matter physics to unveil novel electronic states. In this work, we predict that broken inversion symmetry and strong spin–orbit coupling in trigonal PtBi2 lead to a type-I Weyl semimetal band structure. Transport measurements show an unusually robust low dimensional superconductivity in thin exfoliated flakes up to 126 nm in thickness (with Tc ∼ 275–400 mK), which constitutes the first report and study of unambiguous superconductivity in a type-I Weyl semimetal. Remarkably, a Berezinskii-Kosterlitz-Thouless transition with TBKT ∼ 310 mK is revealed in up to 60 nm thick flakes, which is nearly an order of magnitude thicker than the rare examples of two-dimensional superconductors exhibiting such a transition. This makes PtBi2 an ideal platform to study low dimensional and unconventional superconductivity in topological semimetals
    corecore