81 research outputs found

    Palladacycles: Effective Catalysts for a Multicomponent Reaction with Allylpalladium(II)-Intermediates

    Get PDF
    Palladium(II) complexes with an auxiliary bidentate ligand featuring one C-Pd bond and a Pd-N-donor bond (palladacycles) have been shown to afford improved yields of homoallylic amines from a three-component coupling of boronic acids, allenes and imines in comparison to the yields of homoallylic amines achieved with the originally reported catalyst (Pd(OAc)2/P(t-Bu)3), thus extending the scope of the reaction. 31P NMR monitoring studies indicate that distinct intermediates featuring Pd-P bonds originate in the reactions catalyzed by either Pd(OAc)2/P(t-Bu)3 or the pallada(II)cycle/P(t-Bu)3 systems, suggesting that the role of the pallada(II)cycles is more complex than just precatalysts. The importance of an additional phosphine ligand in the reactions catalyzed the pallada(II)cycles was established, and its role in the catalytic cycle has been proposed. Insights into the nature of the reactive intermediates that limit the performance of the originally reported catalytic systems has been gained

    Final Report for: "Bis-pi-allylpalladium Complexes in Catalysis of Multicomponent Reactions"

    Full text link
    The research project involved the development of new and functionally improved Pd(II) catalyst for a three-component reaction of boronic acids, allenes and imines to afford homoallylic amines that are useful in synthesis of biologically active heterocycles. Furthermore, insights into the reaction mechanism and the structure and reactivity of the catalytically active intermediates involved in this process were sought. As a result of this work, a new type of Pd-catalysts possessing an auxiliary ligand attached to the Pd center via a C-Pd and N-Pd bonds were identified, and found to be more active than the traditional catalysts derived from Pd(OAc)2. The new catalysts provided an access to a broader range of homoallylic amine products. Although the final unequivocal evidence regarding the structure of the Pd(II) complex involved in the nucleophilic transfer of the allyl fragment from the palladium center to the imine could not be obtained, mechanistic insights into the events that are detrimental to the activity of the originally reported Pd(OAc)2-based catalytic systems were uncovered

    Functional PCS power supply system with EV battery storage for stable PV power delivery

    Get PDF
    This research proposes a residential Photovoltaic-Power Conditioning Subsystem (PV-PCS) in a functional and stable power supply system with battery storage (Electric Vehicle [EV] storage etc.) to reduce PV output fluctuation. In PV power generation, PV power fluctuations caused by weather changes make it difficult to obtain stable power output. Further, it can then be expected that this adversely affects the power system. In this paper, functional power supply system model is constructed with power fluctuation suppression control system using bidirectional DC/DC converter and existing residential PCS and EV battery storage. Furthermore, simulation results of the electric battery power suppression element of the PV power fluctuation are also shown by using Simple Moving Average (SMA) control method to suppress PV power fluctuation. PV power suppression system using existing residential PCS has an advantage that can not only suppress the energy change during normal operation but can also construct the isolated power supply in an emergency case of power supply loss. In this emergency case, EV battery storage control provides the power to critical loads during utility outage. This feature is not available without storage. Also, effectiveness of PV-PCS interconnection stable power supply system with existing residential PCS in Japan was proposed. Moreover, a basic research of solar power generation amount of solar radiation estimation and the resulting simulation on information acquisition method of solar energy capacity using Geographic Information System (GIS) are presented

    Protein phosphatase 4 catalytic subunit regulates Cdk1 activity and microtubule organization via NDEL1 dephosphorylation

    Get PDF
    Protein phosphatase 4 catalytic subunit (PP4c) is a PP2A-related protein serine/threonine phosphatase with important functions in a variety of cellular processes, including microtubule (MT) growth/organization, apoptosis, and tumor necrosis factor signaling. In this study, we report that NDEL1 is a substrate of PP4c, and PP4c selectively dephosphorylates NDEL1 at Cdk1 sites. We also demonstrate that PP4c negatively regulates Cdk1 activity at the centrosome. Targeted disruption of PP4c reveals disorganization of MTs and disorganized MT array. Loss of PP4c leads to an unscheduled activation of Cdk1 in interphase, which results in the abnormal phosphorylation of NDEL1. In addition, abnormal NDEL1 phosphorylation facilitates excessive recruitment of katanin p60 to the centrosome, suggesting that MT defects may be attributed to katanin p60 in excess. Inhibition of Cdk1, NDEL1, or katanin p60 rescues the defective MT organization caused by PP4 inhibition. Our work uncovers a unique regulatory mechanism of MT organization by PP4c through its targets Cdk1 and NDEL1 via regulation of katanin p60 distribution

    Effect of CYP2C19 Polymorphism on Treatment Success in Lansoprazole-Based 7-Day Treatment Regimen for Cure of H. pylori Infection in Japan

    Get PDF
    Recently, Helicobacter pylori (H. pylori)-positive peptic ulcer patients were treated by a 1-week triple therapy [lansoprazole (LPZ) 30 mg, amoxicillin 750 mg and clarithromycin 200 or 400 mg, each twice daily] without the checking CYP2C19 genotype in Japan. This regimen was done to obtain sufficient cure rates for H. pylori infection using a high dose of LPZ (60 mg/day) without the great cost of having to determine the genotype. However, the failure rate for eradicating H. pylori was reported to be 12.5%. The reasons for this were studied in 33 Japanese patients with H. pylori-positive gastric or duodenal ulcer. Blood samples of the patients were collected to determine the genotype of CYP2C19 and plasma concentrations of LPZ and its metabolites at 3 h postdose on the morning of the 7th day of treatment. H. pylori infection was cured in 25 of the 33 patients (75.8%). The cure rate was highest in the group of poor metabolizers (PM), intermediate in the group of extensive metabolizers of the heterozygous type (htEM) and lowest in the group of extensive metabolizers of the homozygous type (hmEM). The relative ratio of mean plasma concentration for LPZ among the 3 groups was 1.00:1.43:2.93 (hmEM:htEM:PM groups). Our data suggest that success of the eradication is dependent on the CYP2C19-related genotypic status or the plasma concentrations of LPZ in a steady state condition after a multiple dosing regimen; that is to say, checking CYP2C19 is necessary even on occasions when treatment is done by H. pylori eradication methods as performed in Japan

    Anti-hCD20 Antibody Ameliorates Murine PBC

    Get PDF
    There is considerable interest in expanding B cell-targeted therapies in human autoimmune diseases. However, clinical trials in human primary biliary cholangitis (PBC) using a chimeric antibody against human CD20 (hCD20) have showed limited efficacy. Two potential explanations for these disappointing results are the appearance of anti-drug antibodies (ADAs) and the high frequency of patients with moderate PBC or patients who had failed ursodeoxycholic acid treatment. Here, we studied a novel humanized IgG1 antibody against hCD20 and explored its efficacy in early stage PBC using a well-defined murine model. We developed a unique murine model consisting of dnTGF-bRII mice expressing hCD20 and human Fcg receptors (hFcγRs). Beginning at 4–6 weeks of age, equivalent to stage I/II human PBC, female mice were given weekly injections of an anti-hCD20 antibody (TKM-011) or vehicle control, and monitored for liver histology as well as a broad panel of immunological readouts. After 16 weeks’ treatment, we observed a significant reduction in portal inflammation, a decrease in liver-infiltrating mononuclear cells as well as a reduction in liver CD8+ T cells. Importantly, direct correlations between numbers of liver non-B cells and B cells (r = 0.7426, p = 0.0006) and between numbers of liver memory CD8+ T cells and B cells (r = 0.6423, p = 0.0054) were apparent. Accompanying these changes was a dramatic reduction in anti-mitochondrial antibodies (AMAs), interleukin (IL)-12p40 and IL-5, and elevated levels of the anti-inflammatory chemokine CXCL1/KC. In mice that developed ADAs, clinical improvements were less pronounced. Sustained treatment with B cell-targeted therapies may broadly inhibit effector pathways in PBC, but may need to be administered early in the natural history of PBC

    A Report on Overseas Teaching Practicum by Graduate Students in Elementary/Secondary Schools in the United States(Ⅺ)

    Get PDF
    This paper reports on the 11th overseas teaching practicum in the U.S. 12 students joined this year’s program and they observed and conducted lessons in English in three local public schools in North Carolina after careful and repeated preparation sessions in Japan. Many of them did lessons on crosscultural understandings and a few taught subject contents. Through the trail to convey messages in English, their foreign language, students learned the role of verbal and nonverbal language and the more universal way to explain topics to children who are unfamiliar with what re taught. And they also learned and noticed the cultural differences and similalities between the two countries. It seemed that students realized that the two countries share many things in common such as what chidren are like, teachers’ attitude toward children and challenges they are facing, and people’s kindness. These learning was no substitute experience for the participants and it is hoped that their experience will be passed to the next generation when they become teachers

    Anti-drug Antibodies Against a Novel Humanized Anti-CD20 Antibody Impair Its Therapeutic Effect on Primary Biliary Cholangitis in Human CD20- and FcγR-Expressing Mice

    Get PDF
    There is considerable interest in expanding B cell-targeted therapies in human autoimmune diseases. However, clinical trials in human primary biliary cholangitis (PBC) using a chimeric antibody against human CD20 (hCD20) have showed limited efficacy. Two potential explanations for these disappointing results are the appearance of anti-drug antibodies (ADAs) and the high frequency of patients with moderate PBC or patients who had failed ursodeoxycholic acid treatment. Here, we studied a novel humanized IgG1 antibody against hCD20 and explored its efficacy in early stage PBC using a well-defined murine model. We developed a unique murine model consisting of dnTGF-βRII mice expressing hCD20 and human Fcγ receptors (hFcγRs). Beginning at 4–6 weeks of age, equivalent to stage I/II human PBC, female mice were given weekly injections of an anti-hCD20 antibody (TKM-011) or vehicle control, and monitored for liver histology as well as a broad panel of immunological readouts. After 16 weeks' treatment, we observed a significant reduction in portal inflammation, a decrease in liver-infiltrating mononuclear cells as well as a reduction in liver CD8+ T cells. Importantly, direct correlations between numbers of liver non-B cells and B cells (r = 0.7426, p = 0.0006) and between numbers of liver memory CD8+ T cells and B cells (r = 0.6423, p = 0.0054) were apparent. Accompanying these changes was a dramatic reduction in anti-mitochondrial antibodies (AMAs), interleukin (IL)-12p40 and IL-5, and elevated levels of the anti-inflammatory chemokine CXCL1/KC. In mice that developed ADAs, clinical improvements were less pronounced. Sustained treatment with B cell-targeted therapies may broadly inhibit effector pathways in PBC, but may need to be administered early in the natural history of PBC

    Contribution of Intragenic DNA Methylation in Mouse Gametic DNA Methylomes to Establish Oocyte-Specific Heritable Marks

    Get PDF
    Genome-wide dynamic changes in DNA methylation are indispensable for germline development and genomic imprinting in mammals. Here, we report single-base resolution DNA methylome and transcriptome maps of mouse germ cells, generated using whole-genome shotgun bisulfite sequencing and cDNA sequencing (mRNA-seq). Oocyte genomes showed a significant positive correlation between mRNA transcript levels and methylation of the transcribed region. Sperm genomes had nearly complete coverage of methylation, except in the CpG-rich regions, and showed a significant negative correlation between gene expression and promoter methylation. Thus, these methylome maps revealed that oocytes and sperms are widely different in the extent and distribution of DNA methylation. Furthermore, a comparison of oocyte and sperm methylomes identified more than 1,600 CpG islands differentially methylated in oocytes and sperm (germline differentially methylated regions, gDMRs), in addition to the known imprinting control regions (ICRs). About half of these differentially methylated DNA sequences appear to be at least partially resistant to the global DNA demethylation that occurs during preimplantation development. In the absence of Dnmt3L, neither methylation of most oocyte-methylated gDMRs nor intragenic methylation was observed. There was also genome-wide hypomethylation, and partial methylation at particular retrotransposons, while maintaining global gene expression, in oocytes. Along with the identification of the many Dnmt3L-dependent gDMRs at intragenic regions, the present results suggest that oocyte methylation can be divided into 2 types: Dnmt3L-dependent methylation, which is required for maternal methylation imprinting, and Dnmt3L-independent methylation, which might be essential for endogenous retroviral DNA silencing. The present data provide entirely new perspectives on the evaluation of epigenetic markers in germline cells

    Geographical variations in abundance and body size of the hydromedusa Aglantha digitale in the northern North Pacific and its adjacent seas

    Get PDF
    Geographical variations in abundance and body size of the hydromedusa Aglantha digitale (O.F. Müller, 1766) were evaluated in the northern North Pacific (NP), the water around Aleutian Islands (AL), eastern Bering Sea shelf (BS) and Chukchi Sea (CH) during the summers of 2007 and 2008. Abundances of A. digitale ranged between 38 and 221 ind. m-2, and had significant inverse relationships with the proportion of mature individuals. While abundances showed large annual variability, body sizes had a common regional pattern both 2007 and 2008. Body size and minimum size of maturity A. digitale were smaller in the BS and CH than those in the NP and AL. The smaller size at maturity in the BS and CH suggests regional variations in the acquired energy budget. The rapid maturity and reproduction in the BS and CH may indicate that they utilize acquired energy to mature and reproduce from smaller body sizes, while slow maturity in the NP and AL may imply that they convert acquired energy to somatic growth first
    corecore