494 research outputs found

    Pressure-driven instability in auroral images to create auroral patches

    Get PDF
    第3回極域科学シンポジウム/第36回極域宙空圏シンポジウム 11月27日(火) 国立極地研究所 2階大会議

    The geospace response to variable inputs from the lower atmosphere:a review of the progress made by Task Group 4 of CAWSES-II

    Get PDF
    The advent of new satellite missions, ground-based instrumentation networks, and the development of whole atmosphere models over the past decade resulted in a paradigm shift in understanding the variability of geospace, that is, the region of the atmosphere between the stratosphere and several thousand kilometers above ground where atmosphere-ionosphere-magnetosphere interactions occur. It has now been realized that conditions in geospace are linked strongly to terrestrial weather and climate below, contradicting previous textbook knowledge that the space weather of Earth's near space environment is driven by energy injections at high latitudes connected with magnetosphere-ionosphere coupling and solar radiation variation at extreme ultraviolet wavelengths alone. The primary mechanism through which energy and momentum are transferred from the lower atmosphere is through the generation, propagation, and dissipation of atmospheric waves over a wide range of spatial and temporal scales including electrodynamic coupling through dynamo processes and plasma bubble seeding. The main task of Task Group 4 of SCOSTEP's CAWSES-II program, 2009 to 2013, was to study the geospace response to waves generated by meteorological events, their interaction with the mean flow, and their impact on the ionosphere and their relation to competing thermospheric disturbances generated by energy inputs from above, such as auroral processes at high latitudes. This paper reviews the progress made during the CAWSES-II time period, emphasizing the role of gravity waves, planetary waves and tides, and their ionospheric impacts. Specific campaign contributions from Task Group 4 are highlighted, and future research directions are discussed

    Dynamical Decoupling Using Slow Pulses: Efficient Suppression of 1/f Noise

    Get PDF
    The application of dynamical decoupling pulses to a single qubit interacting with a linear harmonic oscillator bath with 1/f1/f spectral density is studied, and compared to the Ohmic case. Decoupling pulses that are slower than the fastest bath time-scale are shown to drastically reduce the decoherence rate in the 1/f1/f case. Contrary to conclusions drawn from previous studies, this shows that dynamical decoupling pulses do not always have to be ultra-fast. Our results explain a recent experiment in which dephasing due to 1/f1/f charge noise affecting a charge qubit in a small superconducting electrode was successfully suppressed using spin-echo-type gate-voltage pulses.Comment: 5 pages, 3 figures. v2: Many changes and update

    Longitudinal development of a substorm brightening arc

    Get PDF
    We present simultaneous THEMIS-ground observations of longitudinal (eastward) extension of a substorm initial-brightening arc at Gillam (magnetic latitude: 65.6°) at 08:13 UT on 10 January 2008. The speed of the eastward arc extension was ~2.7 km/s. The extension took place very close to the footprints of the longitudinally separated THEMIS E and D satellites at ~12 <I>R<sub>E</sub></I>. The THEMIS satellites observed field dipolarization, weak earthward flow, and pressure increase, which propagated eastward from E to D at a speed of ~50 km/s. The THEMIS A satellite, located at 1.6 <I>R<sub>E</sub></I> earthward of THEMIS E, observed fluctuating magnetic field during and after the dipolarization. The THEMIS E/D observations suggest that the longitudinal extension of the brightening arc at substorm onset is caused by earthward flow braking processes which produce field dipolarization and pressure increase propagating in longitude in the near-earth plasma sheet

    Wave Propagation in Stochastic Spacetimes: Localization, Amplification and Particle Creation

    Get PDF
    Here we study novel effects associated with electromagnetic wave propagation in a Robertson-Walker universe and the Schwarzschild spacetime with a small amount of metric stochasticity. We find that localization of electromagnetic waves occurs in a Robertson-Walker universe with time-independent metric stochasticity, while time-dependent metric stochasticity induces exponential instability in the particle production rate. For the Schwarzschild metric, time-independent randomness can decrease the total luminosity of Hawking radiation due to multiple scattering of waves outside the black hole and gives rise to event horizon fluctuations and thus fluctuations in the Hawking temperature.Comment: 26 pages, 1 Postscript figure, submitted to Phys. Rev. D on July 29, 199

    Finite Number and Finite Size Effects in Relativistic Bose-Einstein Condensation

    Get PDF
    Bose-Einstein condensation of a relativistic ideal Bose gas in a rectangular cavity is studied. Finite size corrections to the critical temperature are obtained by the heat kernel method. Using zeta-function regularization of one-loop effective potential, lower dimensional critical temperatures are calculated. In the presence of strong anisotropy, the condensation is shown to occur in multisteps. The criteria of this behavior is that critical temperatures corresponding to lower dimensional systems are smaller than the three dimensional critical temperature.Comment: 18 pages, 9 figures, Fig.3 replaced, to appear in Physical Review

    Decoherence, Chaos, and the Correspondence Principle

    Full text link
    We present evidence that decoherence can produce a smooth quantum-to-classical transition in nonlinear dynamical systems. High-resolution tracking of quantum and classical evolutions reveals differences in expectation values of corresponding observables. Solutions of master equations demonstrate that decoherence destroys quantum interference in Wigner distributions and washes out fine structure in classical distributions bringing the two closer together. Correspondence between quantum and classical expectation values is also re-established.Comment: 4 pages, 2 figures (color figures embedded at low resolution), uses RevTeX plus macro (included). Phys. Rev. Lett. (in press

    One-loop graviton corrections to Maxwell's equations

    Full text link
    We compute the graviton induced corrections to Maxwell's equations in the one-loop and weak field approximations. The corrected equations are analogous to the classical equations in anisotropic and inhomogeneous media. We analyze in particular the corrections to the dispersion relations. When the wavelength of the electromagnetic field is much smaller than a typical length scale of the graviton two-point function, the speed of light depends on the direction of propagation and on the polarisation of the radiation. In the opposite case, the speed of light may also depend on the energy of the electromagnetic radiation. We study in detail wave propagation in two special backgrounds, flat Robertson-Walker and static, spherically symmetric spacetimes. In the case of a flat Robertson-Walker gravitational background we find that the corrected electromagnetic field equations correspond to an isotropic medium with a time-dependent effective refractive index. For a static, spherically symmetric background the graviton fluctuations induce a vacuum structure which causes birefringence in the propagation of light.Comment: 15 pages, revte
    corecore