32 research outputs found

    Change in thermal transitions and water uptakes of poly(l-lactic acid) blends upon hydrolytic degradation

    Get PDF
    AbstractThis article reports experimental data related to the research article entitled “Poly(malic acid-co-l-lactide) as a Superb Degradation Accelerator for Poly(l-lactic acid) at Physiological Conditions” (H.T. Oyama, D. Tanishima, S. Maekawa, 2016) [1]. Hydrolytic degradation of poly(l-lactic acid) (PLLA) blends with poly(aspartic acid-co-l-lactide) (PAL) and poly(malic acid-co-l-lactide) (PML) oligomers was investigated in a phosphate buffer solution at 40°C. It was found in the differential scanning calorimetry measurements that upon hydrolysis the cold crystallization temperature (Tc) and the melting temperature (Tm) significantly shifted to lower temperature. Furthermore, the hydrolysis significantly promoted water sorption in both blends

    Characterization of transgene expression and pDNA distribution of the suctioned kidney in mice

    Get PDF
    We have previously developed an efficient and safe transfection method for the kidney in mice: renal suction-mediated transfection. In this study, we verified the detailed characteristics of transgene expression and plasmid DNA (pDNA) in mice to develop therapeutic strategies and application to gene function analysis in the kidney. After naked pDNA was administered intravenously, the right kidney was immediately suctioned by a tissue suction device. We examined the spatial distribution of transgene expression and pDNA in the suctioned kidney using tissue clearing by CUBIC, ClearT2, and Scale SQ reagents. Spatial distribution analysis showed that pDNA was transfected into extravascular cells and sufficiently delivered to the deep renal cortex. In addition, we revealed that transgene expression occurred mainly in peritubular fibroblasts of the suctioned kidney by tissue clearing and immunohistochemistry. Next, we confirmed the periods of pDNA uptake and activation of transcription factors nuclear factor-ÎșB and activator protein 1 by luciferase assays. Moreover, the use of a pCpG-free plasmid enabled sustained transgene expression in the suctioned kidney. In conclusion, analyses of the spatial distribution and immunostaining of the section suggest that pDNA and transgene expression occurs mainly in peritubular fibroblasts of the suctioned kidney. In addition, we clarified some factors for efficient and/or sustained transgene expression in the suctioned kidney

    Detection of a bright burst from the repeating FRB 20201124A at 2 GHz

    Full text link
    We present a detection of a bright burst from FRB 20201124A, which is one of the most active repeating FRBs, based on S-band observations with the 64-m radio telescope at the Usuda Deep Space Center/JAXA. This is the first FRB observed by using a Japanese facility. Our detection at 2 GHz in February 2022 is the highest frequency for this FRB and the fluence of >> 189 Jy ms is one of the brightest bursts from this FRB source. We place an upper limit on the spectral index α\alpha = -2.14 from the detection of the S band and non-detection of the X band at the same time. We compare an event rate of the detected burst with ones of the previous research, and suggest that the power-law of the luminosity function might be broken at lower fluence, and the fluences of bright FRBs distribute up to over 2 GHz with the power-law against frequency. In addition, we show the energy density of the burst detected in this work was comparable to the bright population of one-off FRBs. We propose that repeating FRBs can be as bright as one-off FRBs, and only their brightest bursts could be detected so some of repeating FRBs intrinsically might have been classified as one-off FRBs.Comment: 8 pages, 5 figures, accepted for publication in Publications of the Astronomical Society of Japan (PASJ

    Transcript Annotation in FANTOM3: Mouse Gene Catalog Based on Physical cDNAs

    Get PDF
    The international FANTOM consortium aims to produce a comprehensive picture of the mammalian transcriptome, based upon an extensive cDNA collection and functional annotation of full-length enriched cDNAs. The previous dataset, FANTOM2, comprised 60,770 full-length enriched cDNAs. Functional annotation revealed that this cDNA dataset contained only about half of the estimated number of mouse protein-coding genes, indicating that a number of cDNAs still remained to be collected and identified. To pursue the complete gene catalog that covers all predicted mouse genes, cloning and sequencing of full-length enriched cDNAs has been continued since FANTOM2. In FANTOM3, 42,031 newly isolated cDNAs were subjected to functional annotation, and the annotation of 4,347 FANTOM2 cDNAs was updated. To accomplish accurate functional annotation, we improved our automated annotation pipeline by introducing new coding sequence prediction programs and developed a Web-based annotation interface for simplifying the annotation procedures to reduce manual annotation errors. Automated coding sequence and function prediction was followed with manual curation and review by expert curators. A total of 102,801 full-length enriched mouse cDNAs were annotated. Out of 102,801 transcripts, 56,722 were functionally annotated as protein coding (including partial or truncated transcripts), providing to our knowledge the greatest current coverage of the mouse proteome by full-length cDNAs. The total number of distinct non-protein-coding transcripts increased to 34,030. The FANTOM3 annotation system, consisting of automated computational prediction, manual curation, and final expert curation, facilitated the comprehensive characterization of the mouse transcriptome, and could be applied to the transcriptomes of other species

    Systemic Oxidative Stress Is Associated With Lower Aerobic Capacity and Impaired Skeletal Muscle Energy Metabolism in Patients With Metabolic Syndrome

    Get PDF
    OBJECTIVE-Systemic oxidative stress is associated with insulin resistance and obesity. We tested the hypothesis that systemic oxidative stress is linked to lower aerobic capacity and skeletal muscle dysfunction in metabolic syndrome (MetS). RESEARCH DESIGN AND METHODS-The incremental exercise testing with cycle ergometer was performed in 14 male patients with MetS and 13 age-, sex-, and activity-matched healthy subjects. Systemic lipid peroxidation was assessed by serum thiobarbituric acid reactive substances (TBARS), and systemic antioxidant defense capacity was assessed by serum total thiols and enzymatic activity of superoxide dismutase (SOD). To assess skeletal muscle energy metabolism, we measured high-energy phosphates in the calf muscle during plantar flexion exercise and intramyocellular lipid (IMCL) in the resting leg muscle, using P-31- and (1)proton-magnetic resonance spectroscopy, respectively. RESULTS-Serum TBARS were elevated (12.4 +/- 7.1 vs. 3.7 +/- 1.1 mu mol/L; P < 0.01), and serum total thiols and SOD activity were decreased (290.8 +/- 51.2 vs. 398.7 +/- 105.2 mu mol/L, P < 0.01; and 22.2 +/- 8.4 vs. 31.5 +/- 8.5 units/L, P < 0.05, respectively) in patients with MetS compared with healthy subjects. Peak VO2 and anaerobic threshold normalized to body weight were significantly lower in MetS patients by 25 and 31%, respectively, and inversely correlated with serum TBARS (r = -0.49 and r = -0.50, respectively). Moreover, muscle phosphocreatine loss during exercise was 1.4-fold greater in patients with MetS (P < 0.05), and IMCL content was 2.9-fold higher in patients with MetS (P < 0.01), indicating impaired skeletal muscle energy metabolism, and these indices positively correlated with serum TBARS (r = 0.45 and r = 0.63, respectively). CONCLUSIONS-Systemic oxidative stress was associated with lower aerobic capacity and impaired skeletal muscle energy metabolism in patients with MetS
    corecore