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Abstract 

 

OBJECTIVE-Systemic oxidative stress is associated with insulin resistance and 

obesity. We tested the hypothesis that systemic oxidative stress is linked to lower 

aerobic capacity and skeletal muscle dysfunction in metabolic syndrome (MetS).  

RESEARCH DESIGN AND METHODS-The incremental exercise testing with 

cycle ergometer was performed in 14 male patients with MetS and 13 age-, sex-, 

and activity-matched healthy subjects. Systemic lipid peroxidation was assessed 

by serum thiobarbituric acid reactive substances (TBARS), and systemic 

antioxidant defense capacity was assessed by serum total thiols and enzymatic 

activity of superoxide dismutase (SOD). To assess skeletal muscle energy 

metabolism, we measured high-energy phosphates in the calf muscle during 

plantar flexion exercise and intramyocellular lipid (IMCL), using 31phosphorus- 

and 1proton-magnetic resonance spectroscopy, respectively. 

RESULTS-Serum TBARS were elevated (12.4±7.1 vs. 3.7±1.1 μmol/l, P<0.01), 

and serum total thiols and SOD activity were decreased (290.8±51.2 vs. 

398.7±105.2 μmol/l, P<0.01 and 22.2±8.4 vs. 31.5±8.5 units/l, P<0.05, 

respectively) in patients with MetS compared with healthy subjects. Peak VO2 and 

anaerobic threshold normalized to body weight were significantly lower in MetS 

patients by 25% and 31%, respectively, and inversely correlated with serum 

TBARS (r=-0.49 and r=-0.50, respectively). Moreover, muscle phosphocreatine 

loss during exercise was 1.4-fold greater in patients with MetS (P<0.05) and 

IMCL content was 2.9-fold higher in patients with MetS (P<0.01), indicating 

impaired skeletal muscle energy metabolism, and these indices positively 

correlated with serum TBARS (r=0.45 and r=0.63, respectively). 
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CONCLUSIONS-Systemic oxidative stress was associated with lower aerobic 

capacity and impaired skeletal muscle energy metabolism in patients with MetS. 
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Metabolic syndrome (MetS) is mainly characterized by insulin resistance and 

obesity, which increases not only the risk of developing type 2 diabetes and 

cardiovascular diseases but also all-cause mortality (1). The drastic increase in 

patients with MetS has been now recognized as medical and public health crisis in 

the world. 

Lower aerobic capacity is one of the strongest and independent predictors of 

all-cause mortality in subjects with obesity and insulin resistance (2,3), and it is 

essential to improve lower aerobic capacity in the treatment of MetS. Skeletal 

muscle energy metabolism is a major determinant of aerobic capacity, and its 

metabolic regulation is largely dependent on mitochondrial function which plays a 

pivotal role in energy homeostasis including the metabolism of nutrients and 

production of ATP (4). Recent studies have shown that impaired mitochondrial 

function in skeletal muscle may be involved in the pathogenesis of insulin 

resistance (5-7). Moreover, it has been reported that intramyocellular lipid 

(IMCL) is accumulated in patients with MetS, which is mainly due to impaired 

fatty acid oxidation in skeletal muscle rather than increased uptake of fatty acid 

into skeletal muscle (8,9). Recently, we demonstrated that increased IMCL was 

associated with lower aerobic capacity and impaired intramuscular high-energy 

phosphate metabolism in patients with MetS (10). However, the mechanisms 

whereby aerobic capacity and skeletal muscle energy metabolism are impaired in 

MetS remain fully unexplored.  

Oxidative stress is generally defined as an imbalance between reactive 

oxygen species (ROS) production and antioxidant defense capacity. An increased 

amount of evidence suggests that oxidative stress is linked to either primary or 

secondary pathogenesis of various chronic diseases, such as cancer (11), type 2 
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diabetes (12), inflammation (13), and neurodegenerative disorders (14). Recently, 

it has been demonstrated that systemic oxidative stress is related to insulin 

resistance and obesity (15,16). Furthermore, it has been reported that oxidative 

stress can cause mitochondrial dysfunction in skeletal muscle from diet-induced 

insulin-resistant mice (17). These reports raise the possibility that systemic 

oxidative stress may contribute to lower aerobic capacity and skeletal muscle 

dysfunction in patients with MetS. 

In the present study, we tested the hypothesis that systemic oxidative stress 

is associated with lower aerobic capacity and impaired skeletal muscle energy 

metabolism in patients with MetS. For a comprehensive investigation of oxidative 

stress, we measured byproducts of ROS by serum thiobarbituric reactive 

substances (TBARS) as well as serum total thiols, superoxide dismutase (SOD) 

and glutathione peroxidase (GPx) enzymatic activities as an antioxidant defense 

capacity. Moreover, to assess skeletal muscle energy metabolism, high-energy 

phosphates in the calf muscle during plantar flexion exercise and IMCL content in 

the resting leg muscle were measured using magnetic resonance spectroscopy 

(MRS).      

 

RESEARCH DESIGN AND METHODS 

 

Subjects 

Fourteen male patients with MetS diagnosed on the basis of International Diabetes 

Federation criteria, and 13 age-, sex-, and activity-matched healthy control 

subjects were enrolled in the present study. Patients with cardiovascular disease, 

peripheral artery disease, pulmonary disease, stroke, and orthopedic disease who 
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had difficulty performing exercise testing were excluded. None of the subjects 

were taking medications to treat type 2 diabetes or dyslipidemia. Among 14 

patients with MetS, 7 patients were treated with antihypertensive drugs, including 

calcium antagonists in 5 patients, β-blockers in 3 patients, angiotensin II receptor 

blockers in 3 patients, and/or diuretics in 1 patient. The protocol was approved by 

the Medical Ethics Committee of Hokkaido University Hospital, and a written 

informed consent was obtained from all participating subjects. 

 

Clinical and anthropometric measurements 

Body weight, height, waist circumference, and blood pressure were measured. 

Whole-body fat mass and lean body mass (LBM) were measured by an air 

displacement plethysmograph (BOD POD® Body Composition System; Life 

Measurement Instruments, Concord, CA), as previously described (10).  

 

Blood analysis 

Peripheral blood samples were collected after a 10 h of fasting. Blood glucose, 

plasma insulin, glycohemoglobin A1c (HbA1c), HDL-cholesterol, 

LDL-cholesterol, triglyceride, and free fatty acids were measured. The 

homeostasis assessment model of insulin resistance (HOMA-IR) was calculated 

(18). 

 

Aerobic capacity 

All subjects exercised on an upright electromechanical bicycle ergometer with 

electrocardiogram using a ramp protocol (25 watts/min after a 3 min warm-up), as 

previously described (10). Respiratory gas analysis was simultaneously performed 
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with a breath-by-breath apparatus (Aeromonitor AE-300S, Minato Medical 

Science, Osaka, Japan), and peak VO2 was measured. Anaerobic threshold (AT) 

was determined by the V-slope method (19) except one patient.   

 

Daily physical activity 

To monitor the level of physical activity during daily life, daily steps and 

movement-related calorie consumption were measured for at least 1 week by using 

a pedometer with an accelerometry sensor (Lifecorder Plus, Suzuken, Nagoya, 

Japan), as previously described (10). 

 

Intramuscular high-energy phosphate metabolism 

Before measurements, muscle strength was determined by the one-repetition 

maximum (1-RM) method, as previously described (10). The calf flexor muscle 

cross-sectional area was measured at the level of muscle belly using magnetic 

resonance images. After at least 30 min rest, high-energy phosphate metabolism in 

the calf muscle was measured during plantar flexion exercise in supine position 

on the original apparatus equipped with a 1.5-Tesla (T) whole body scanner 

system (Magnetom Vision VB33G, Siemens, Erlangen, Germany), using 

31phosphorus-MRS (31P-MRS), as previously described (10). Unilateral 

plantar-flexion exercise was performed with a constant load of 20% 1-RM for 4 

min at the pace of 40 repetitions/min. Phosphocreatine (PCr) was standardized as 

[PCr]/([PCr]+[Pi]) on the basis of the notion that [PCr]+[Pi] is constant at rest 

and during exercise, where [PCr] indicates concentration of PCr and [Pi] indicates 

concentration of inorganic phosphate (Pi). Moreover, the degree of PCr change 

(i.e. PCr loss) during exercise was calculated as PCr loss = standardized PCrrest  – 
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standardized PCrpeak, where PCrrest indicates the PCr level at rest and PCrpeak 

indicates the lowest PCr level during exercise.  

 

IMCL content  

IMCL content in the resting tibialis anterior muscle at the level of the muscle 

belly of calf was measured by proton (1H)-MRS on a 1.5-T whole-body scanner 

system (Signa Horizon LX, GE Medical Systems, Milwaukee, WI), as previously 

described (10).  

 

Systemic oxidative stress 

Serum TBARS were measured by fluorometric analysis using a GENios Pro 

(Tecan Group Ltd., Switzerland), as previously described (20). We also measured 

serum total thiols, SOD and GPx activities. The amount of total thiols was 

measured spectrophotometrically with 5,5’-dithiobis (2-nitrobenzoic acid) 

(DTNB) (Sigma-Aldrich, St. Louis, MO), as previously described (21). Enzymatic 

activity of SOD and GPx was measured by fluorometric analysis, as previously 

described (20).  

 

Statistical analysis 

Data are expressed as means ± SD. Student’s unpaired t-tests were performed to 

compare means between control subjects and patients with MetS. Correlations 

were examined by linear regression analysis using the least-squares method. 

Based on the previous report that compared the marker of oxidative stress between 

control subjects and patients with MetS (22), sample size of 13 subjects in each 

group was needed to detect the effect compared with the threshold change of 0 
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under the conditions of α = 0.05 and β = 0.2. Moreover, to determine the 

association between oxidative stress and aerobic capacity of a large effect size (i.e. 

r = 0.5), a sample size of total 27 subjects was needed to yield efficient power 

(1-β = 0.8) based on α = 0.05. Statistical analysis was performed using StatView 

software (SAS Institute, Inc., Cary, NC), and P < 0.05 was considered statistically 

significant. 

 

RESULTS 

 

Characteristics of the study subjects (Table 1) 

Body weight, BMI, percent fat, and waist circumference were significantly higher 

in patients with MetS than control subjects. Fasting blood glucose, plasma insulin, 

HOMA-IR, HbA1c, and triglycerides were significantly elevated, and HDL 

cholesterol was significantly decreased in patients with MetS.  

Peak VO2 and AT normalized to both body weight and LBM were 

significantly lower in patients with MetS. There was no significant difference in 

daily physical activity between patients with MetS and control subjects (Steps; 

8367 ± 3670 vs. 7172 ± 1717 steps/day, Movement-related calorie consumption; 

265 ± 209 vs. 214 ± 62 kcal/day).  

 

Intramuscular high-energy phosphate metabolism and IMCL content 

After the initiation of constant load of 20% 1-RM exercise, PCr level in the calf 

muscle started to decrease and was finally stabilized within a few minutes in all 

subjects. The representative spectra of 31P-MRS are shown in Supplemental Fig. 1. 

In summary, the standardized PCr level at rest was comparable, whereas the 
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lowest level of standardized PCr during exercise was significantly reduced in 

patients with MetS (Table 2). As a result, muscle PCr loss during exercise was 

greater in patients with MetS (Table 2). In addition, there was an inverse 

correlation between muscle PCr loss and peak VO2 (r = -0.49, P < 0.01) or AT (r = 

-0.51, P < 0.01) normalized to body weight in all subjects by linear regression 

analysis, indicating that impairment in intramuscular high-energy phosphate 

metabolism was associated with the lower aerobic capacity in MetS. 

IMCL content was higher in patients with MetS than control subjects (Table 

2). IMCL content also inversely correlated with peak VO2 (r = -0.64, P < 0.001) or 

AT (r = -0.61, P < 0.001) normalized to body weight. Moreover, IMCL content 

positively correlated with muscle PCr loss (r = 0.55, P < 0.01), indicating that the 

increased IMCL content might be attributable to impaired fatty acid oxidation in 

skeletal muscle in MetS. 

 

Systemic oxidative stress 

Serum TBARS were significantly increased in patients with MetS (Fig. 1A). 

Moreover, serum total thiols and SOD activity were significantly lower in patients 

with MetS than control subjects (Fig. 1B and D). In contrast, there was no 

significant difference in GPx activity between groups (Fig. 1C). 

 

Relationships between systemic oxidative stress and insulin resistance, aerobic 

capacity, or skeletal muscle energy metabolism 

Fasting blood glucose, plasma insulin, free fatty acids, and HOMA-IR positively 

correlated with serum TBARS (Supplemental Fig. 2A-D). Peak VO2 normalized to 

body weight inversely correlated with serum TBARS, however, it did not correlate 
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with systemic antioxidant defense capacity including total thiols and SOD activity 

(Fig. 2A). In contrast, AT normalized to body weight had close relationships with 

both serum TBARS and systemic antioxidant defense capacity (Fig. 2B). There 

were also relationships between skeletal muscle energy metabolism and some 

indices of systemic oxidative stress (Fig. 2C and D).  

 

CONCLUSIONS 

 

Patients with MetS had significantly higher systemic lipid peroxidation products 

and lower systemic antioxidant defense capacity including serum total thiols and 

SOD activity compared with age-, sex-, and activity-matched healthy subjects, 

indicating enhanced systemic oxidative stress in MetS. Moreover, importantly, the 

increased systemic lipid peroxidation products and the decreased systemic 

antioxidant defense capacity correlated with lower aerobic capacity and impaired 

skeletal muscle energy metabolism. Therefore, we established a new association 

between systemic oxidative stress and aerobic capacity in patients with MetS. 

Lipid peroxidation products including TBARS are commonly used as 

biomarkers of oxidative stress, as they can contribute to or amplify cellular 

damage resulting from generation of oxidized products (23). Moreover, thiol 

compounds, such as glutathione, cysteine, and cysteinyl-glycine, are natural 

reservoir of reductive power, and act as intracellular and extracellular redox 

buffers (24). SOD is also an antioxidant which enzymatically converts superoxide 

(O2
-) into hydrogen peroxide. Therefore, decreased serum total thiols and SOD 

activity may contribute to the enhanced systemic oxidative stress in patients with 

MetS.  
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There was a close relationship between systemic oxidative stress and 

impaired skeletal muscle energy metabolism (Fig. 2C and D), which might 

indicate that increased ROS production in skeletal muscle is involved in 

impairment of skeletal muscle energy metabolism in MetS. Hyperglycemia, 

hyperinsulinemia, and an increase in free fatty acids can cause an increase in ROS 

production (25,26). In general, there are several ROS production sources within 

the cell including NAD(P)H oxidase, xanthine oxidase, uncoupled nitric oxide 

synthase, and mitochondria. We previously demonstrated that NAD(P)H oxidase 

derived-O2
- production was significantly increased in skeletal muscle from high 

fat diet-induced diabetic mice in association with lower aerobic capacity and 

mitochondrial dysfunction in skeletal muscle, and inhibition of NAD(P)H oxidase 

ameliorated these impairments (27). Therefore, ROS derived from NAD(P)H 

oxidase may play a crucial role in increased oxidative damage in skeletal muscle 

in patients with MetS. Moreover, mitochondria can be a primary target for 

oxidative damage, because O2
- can easily impair electron transport chain with 

iron-sulfur center. Indeed, an abundance of evidence suggests that mitochondrial 

function in skeletal muscle is impaired in insulin-resistant subjects (5,7). The 

impairment of mitochondrial function in skeletal muscle results in further 

production of ROS (4,28), which might, at least in part, contribute to the 

enhanced systemic oxidative stress in patients with MetS. 

Recent large clinical trials have demonstrated that systemic oxidative stress 

is related to insulin resistance and obesity (15,16), which is consistent with our 

results that there were tight correlations between serum TBARS and insulin 

resistance markers such as FBS, insulin level, or free fatty acids level 

(Supplemental Fig. 2). Excess circulating free fatty acids or triglycerides lead to 
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their overflow into the mitochondria in skeletal muscle as well as enhanced 

systemic oxidative stress. Because fatty acids are particularly prone to oxidative 

damage, lipid peroxidation products are easily formed in skeletal muscle under 

the condition of increased ROS production, which can cause mitochondrial 

damage and subsequently decrease capacity for fatty acid oxidation (29). The 

increased uptake of fatty acids and decreased fatty acid oxidation in skeletal 

muscle may result in accumulation of muscle lipids, which can further deteriorate 

skeletal muscle energy metabolism, known as lipotoxicity (29,30). Indeed, there 

was a close relationship between accumulated IMCL and impaired high-energy 

phosphate metabolism in skeletal muscle in the present study. Accumulation of 

IMCL and its intermediates such as diacylglycerol may impair insulin signaling in 

skeletal muscle (29,31). Furthermore, oxidative stress can directly impair insulin 

signaling (28,32). Therefore, an elaborate interdependency on mitochondrial 

dysfunction and oxidative stress may cause a catastrophic cycle in skeletal muscle 

in patients with MetS, which can lead to further deterioration of aerobic capacity 

as well as insulin resistance. Unfortunately, we could not directly measure 

oxidative stress in skeletal muscle, and thus could not address whether it was 

enhanced. However, lipid peroxidation products in skeletal muscle have been 

reported to be significantly elevated in obese subjects (33).  

Low aerobic capacity is a major determinant of mortality and morbidity in 

insulin resistance and type 2 diabetes (2,3). The relationship between systemic 

oxidative stress and lower aerobic capacity may indicate that systemic oxidative 

stress, at least in part, contributes to poor prognosis in patients with MetS with 

low aerobic capacity, as oxidative stress can increase the risk of developing type 2 

diabetes and cardiovascular diseases (34). It has been demonstrated that weight 
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loss induced by diet and exercise therapy improves insulin resistance and reduces 

biomarkers of systemic oxidative stress in patients with MetS (35). Therefore, 

diet and exercise therapies are beneficial for patients with MetS from the 

perspective of treatment of enhanced systemic oxidative stress as well as insulin 

resistance and lower aerobic capacity. 

There are some limitations that should be acknowledged. First, we could not 

completely eliminate the possibility of type II error in some of the correlation 

analyses. Although we could not necessarily detect the association between 

aerobic capacity or skeletal muscle energy metabolism and all indices of oxidative 

stress, our conclusions would not be overestimated. Second, we could not show 

the causal relationships between the increase in systemic oxidative stress and the 

decrease in aerobic capacity or the impairment in skeletal muscle energy 

metabolism. Even though we showed their correlations, further studies are needed 

to clarify the causal relationships. 

In summary, we demonstrated for the first time that systemic oxidative stress 

including higher levels of lipid peroxidation and lower antioxidant defense 

capacity was related to lower aerobic capacity and impaired skeletal muscle 

energy metabolism in patients with MetS. These findings provide new insights 

into the pathophysiology of MetS and have an implication that to restore normal 

balance of systemic redox state might be beneficial in the treatment of MetS. 
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Figure legends 

 

Figure 1: Systemic lipid peroxidation and antioxidant defense capacity in control 

subjects (Control) and patients with MetS (MetS). (A) TBARS, (B) Total thiols, 

(C) GPx activity, (D) SOD activity. Data are expressed as means ± SD. GPx, 

glutathione peroxidase; SOD, superoxide dismutase; TBARS; thiobarbituric 

reactive substances. *P < 0.05, †P < 0.01 vs. Control.    

 

Figure 2: Linear relation between systemic oxidative stress and aerobic capacity 

or skeletal muscle energy metabolism in control subjects (= white circles) and 

MetS patients (= black circles). (A) Systemic oxidative stress and peak VO2, (B) 

Systemic oxidative stress and AT, (C) Systemic oxidative stress and PCr loss in 

skeletal muscle, (D) Systemic oxidative stress and IMCL content. AT, anaerobic 

threshold; IMCL, intramyocellular lipid; PCr, phosphocreatine; TBARS; 

thiobarbituric reactive substances. 
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Table 1-Characteristics of the Study Subjects 

 Control (n = 13) MetS (n = 14) 

Age, years 48 ± 9 48 ± 9 

Body weight (BW), kg 66.9 ± 8.3   80.0 ± 10.8† 

Lean body mass (LBM), kg 52.8 ± 5.6 56.4 ± 8.7 

BMI, kg/m2 22.8 ± 2.0  26.8 ± 3.4† 

Percent fat, % 20.9 ± 4.2  28.8 ± 4.3† 

Waist circumference, cm 82.3 ± 7.0  95.5 ± 8.0† 

Systolic blood pressure, mmHg 123 ± 12 134 ± 16 

Diastolic blood pressure, mmHg 76 ± 10  81 ± 11 

Fasting blood glucose, mg/dl 91 ± 8  112 ± 17† 

Insulin, μIU/ml  4.4 ± 2.0  13.1 ± 7.5† 

HOMA-IR  1.0 ± 0.5   3.6 ± 2.2† 

HbA1c, %  5.1 ± 0.3   5.6 ± 0.5† 

HDL cholesterol, mg/dl  62 ± 14   51 ± 11* 

LDL cholesterol, mg/dl 110 ± 28 130 ± 30 

Triglyceride, mg/dl 102 ± 49  158 ± 66* 

Free fatty acids, mEq/l  0.46 ± 0.22  0.55 ± 0.20 

Peak VO2/BW, ml/kg/min 32.5 ± 7.3  24.0 ± 4.3† 

Peak VO2/LBM, ml/kg/min  42.0 ± 10.2  34.2 ± 5.7* 

AT/BW, ml/kg/min 18.0 ± 4.3  12.4 ± 1.3† 

AT/LBM, ml/kg/min 22.1 ± 4.2  17.7 ± 2.4† 
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Data are expressed as means ± SD. AT, anaerobic threshold; HOMA-IR, 

homeostasis assessment model of insulin resistance; HbA1c, glycohemoglobin 

A1c. *P < 0.05, †P < 0.01 vs. Control.  
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Table 2-Skeletal Muscle Energy Metabolism 

 Control (n = 13) MetS (n = 14)  

1-RM, kg 39.8 ± 6.6 43.9 ± 5.9 

MCA of calf muscle, cm2 54.0 ± 7.3 55.9 ± 8.6 

31P-MRS   

Standardized PCrrest  0.88 ± 0.03  0.88 ± 0.02 

Standardized PCrpeak  0.68 ± 0.07  0.61 ± 0.09* 

  PCr loss  0.19 ± 0.07  0.27 ± 0.08* 

1H-MRS     

IMCL content, mmol/kg wet weight   1.7 ± 1.0    4.9 ± 1.5† 

 

Data are expressed as means ± SD. IMCL, intramyocellular lipid; MCA, muscle 

cross-sectional area; 1-RM, one-repetition maximum; PCrrest, phosphocreatine 

level at rest; PCrpeak, the lowest phosphocreatine level during exercise. *P < 0.05, 

†P < 0.01 vs. Control. 
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r = -0.49, P < 0.05 r = 0.34, P = 0.10 r = 0.28, P = 0.28 r = -0.50, P < 0.01 r = 0.68, P < 0.001 r = 0.51, P < 0.05

r = 0.45, P < 0.05 r = -0.40, P < 0.05 r = -0.19, P = 0.35

r = 0.63, P < 0.001 r = -0.35, P = 0.09 r = -0.22, P = 0.29
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