51 research outputs found

    Macroscopic quantum information processing using spin coherent states

    Full text link
    Previously a new scheme of quantum information processing based on spin coherent states of two component Bose-Einstein condensates was proposed (Byrnes {\it et al.} Phys. Rev. A 85, 40306(R)). In this paper we give a more detailed exposition of the scheme, expanding on several aspects that were not discussed in full previously. The basic concept of the scheme is that spin coherent states are used instead of qubits to encode qubit information, and manipulated using collective spin operators. The scheme goes beyond the continuous variable regime such that the full space of the Bloch sphere is used. We construct a general framework for quantum algorithms to be executed using multiple spin coherent states, which are individually controlled. We illustrate the scheme by applications to quantum information protocols, and discuss possible experimental implementations. Decoherence effects are analyzed under both general conditions and for the experimental implementation proposed.Comment: published in Optics Communication August 201

    Reducing nonideal to ideal coupling in random matrix description of chaotic scattering: Application to the time-delay problem

    Full text link
    We write explicitly a transformation of the scattering phases reducing the problem of quantum chaotic scattering for systems with M statistically equivalent channels at nonideal coupling to that for ideal coupling. Unfolding the phases by their local density leads to universality of their local fluctuations for large M. A relation between the partial time delays and diagonal matrix elements of the Wigner-Smith matrix is revealed for ideal coupling. This helped us in deriving the joint probability distribution of partial time delays and the distribution of the Wigner time delay.Comment: 4 pages, revtex, no figures; published versio

    AC resistivity of d-wave ceramic superconductors

    Full text link
    We model d-wave ceramic superconductors with a three-dimensional lattice of randomly distributed π\pi Josephson junctions with finite self-inductance. The linear and nonlinear ac resistivity of the d-wave ceramic superconductors is obtained as function of temperature by solving the corresponding Langevin dynamical equations. We find that the linear ac resistivity remains finite at the temperature TpT_p where the third harmonics of resistivity has a peak. The current amplitude dependence of the nonlinear resistivity at the peak position is found to be a power law. These results agree qualitatively with experiments. We also show that the peak of the nonlinear resistivity is related to the onset of the paramagnetic Meissner effect which occurs at the crossover temperature TpT_p, which is above the chiral glass transition temperature TcgT_{cg}.Comment: 7 eps figures, Phys. Rev. B (in press

    Sensitivity Improvement of Infrared Imaging Video Bolometer for Divertor Plasma Measurement

    Get PDF
    The sensitivity of an infrared imaging video bolometer (IRVB) was improved for the measurement of relatively low energy plasma radiation from the viewpoint of the metal foil absorber material. The photon energy of the radiation was considered up to 1 keV for the divertor plasma measurement. The thickness of the foil absorber was evaluated not only for conventional heavy elements, e.g., platinum, but also for light elements by the relation between the photon energy and attenuation length and by mechanical strength. A heat-transfer calculation using ANSYS suggested that light elements with practical foil thickness provide a higher temperature rise of the foil absorber compared with heavier elements with practical foil thickness. The maximum of the temperature rise was evaluated using He–Ne laser irradiation onto absorber samples. The material dependence of the temperature rise has a similar tendency between calculations and experiments. Experimentally, the sensitivity of the IRVB improved from 280 to 110 µW/cm2 using titanium with 1 µm thickness compared with conventional platinum with 2.5 µm thickness. Consequently, the signal-to-noise ratio of the IRVB could be improved from 2.8 to 9.1

    Single-Cell Transcriptome Analysis Dissects the Replicating Process of Pancreatic Beta Cells in Partial Pancreatectomy Model

    Get PDF
    膵臓ベータ細胞の増殖プロセスを時系列解析 --糖尿病の新規治療開発に期待--. 京都大学プレスリリース. 2020-12-24.Heterogeneity of gene expression and rarity of replication hamper molecular analysis of β-cell mass restoration in adult pancreas. Here, we show transcriptional dynamics in β-cell replication process by single-cell RNA sequencing of murine pancreas with or without partial pancreatectomy. We observed heterogeneity of Ins1-expressing β-cells and identified the one cluster as replicating β-cells with high expression of cell proliferation markers Pcna and Mki67. We also recapitulated cell cycle transition accompanied with switching expression of cyclins and E2F transcription factors. Both transient activation of endoplasmic reticulum stress responders like Atf6 and Hspa5 and elevated expression of tumor suppressors like Trp53, Rb1, and Brca1 and DNA damage responders like Atm, Atr, Rad51, Chek1, and Chek2 during the transition to replication associated fine balance of cell cycle progression and protection from DNA damage. Taken together, these results provide a high-resolution map depicting a sophisticated genetic circuit for replication of the β-cells

    Transport characteristics of deuterium and hydrogen plasmas with ion internal transport barrier in the Large Helical Device

    Get PDF
    A remarkable extension of the high-ion-temperature (high-Ti) regime was obtained in deuterium plasma experiments in the Large Helical Device. In order to clarify transport characteristics in the ion internal transport barrier (ITB) formation with an isotope effect, a dataset of pure deuterium (nD/ne  >  0.8) and pure hydrogen (nH/ne  >  0.8) plasmas in the high-Ti regime were analyzed, and two mechanisms of transport improvement were characterized. A significant reduction of ion heat transport in the core of both deuterium and hydrogen plasmas was observed, indicating ion ITB formation. The dependence of the ion heat diffusivity on temperature ratio (Te/Ti) and normalized Ti-gradient (R/LTi  =  −(R/Ti)(dTi/dr)) was investigated in the core region, in which gyrokinetic simulations with the GKV code predict the destabilization of ion temperature gradient (ITG) modes. The Te/Ti dependence shows ITG-like property, while a significant deviation from the ITG-like property is found in the R/ dependence, indicating suppression of the ITG mode in the large R/ regime and resultant ion ITB formation. In the comparison between deuterium plasma and hydrogen plasma, the lower transport in the deuterium plasma is observed in both ion and electron heat diffusivities, indicating a significant isotope effect. It was found with the nonlinear turbulent transport simulation with GKV that the zonal flow enhancement contributes to the ITG suppression in the deuterium plasma

    Symptomatic periesophageal vagal nerve injury by different energy sources during atrial fibrillation ablation

    Get PDF
    BackgroundSymptomatic gastric hypomotility (SGH) is a rare but major complication of atrial fibrillation (AF) ablation, but data on this are scarce.ObjectiveWe compared the clinical course of SGH occurring with different energy sources.MethodsThis multicenter study retrospectively collected the characteristics and clinical outcomes of patients with SGH after AF ablation.ResultsThe data of 93 patients (67.0 ± 11.2 years, 68 men, 52 paroxysmal AF) with SGH after AF ablation were collected from 23 cardiovascular centers. Left atrial (LA) ablation sets included pulmonary vein isolation (PVI) alone, a PVI plus a roof-line, and an LA posterior wall isolation in 42 (45.2%), 11 (11.8%), and 40 (43.0%) patients, respectively. LA ablation was performed by radiofrequency ablation, cryoballoon ablation, or both in 38 (40.8%), 38 (40.8%), and 17 (18.3%) patients, respectively. SGH diagnoses were confirmed at 2 (1–4) days post-procedure, and 28 (30.1%) patients required re-hospitalizations. Fasting was required in 81 (92.0%) patients for 4 (2.5–5) days; the total hospitalization duration was 11 [7–19.8] days. After conservative treatment, symptoms disappeared in 22.3% of patients at 1 month, 48.9% at 2 months, 57.6% at 3 months, 84.6% at 6 months, and 89.7% at 12 months, however, one patient required surgery after radiofrequency ablation. Symptoms persisted for >1-year post-procedure in 7 patients. The outcomes were similar regardless of the energy source and LA lesion set.ConclusionsThe clinical course of SGH was similar regardless of the energy source. The diagnosis was often delayed, and most recovered within 6 months, yet could persist for over 1 year in 10%

    A multilevel dataset of microplastic abundance in the world’s upper ocean and the Laurentian Great Lakes

    Get PDF
    A total of 8218 pelagic microplastic samples from the world’s oceans were synthesized to create a dataset composed of raw, calibrated, processed, and gridded data which are made available to the public. The raw microplastic abundance data were obtained by different research projects using surface net tows or continuous seawater intake. Fibrous microplastics were removed from the calibrated dataset. Microplastic abundance which fluctuates due to vertical mixing under different oceanic conditions was standardized. An optimum interpolation method was used to create the gridded data; in total, there were 24.4 trillion pieces (8.2 × 104 ~ 57.8 × 104 tons) of microplastics in the world’s upper oceans

    Isotope effects on transport in LHD

    Get PDF
    Isotope effects are one of the most important issues for predicting future reactor operations. Large helical device (LHD) is the presently working largest stellarator/helical device using super conducting helical coils. In LHD, deuterium experiments started in 2017. Extensive studies regarding isotope effects on transport have been carried out. In this paper, the results of isotope effect studies in LHD are reported. The systematic studies were performed adjusting operational parameters and nondimensional parameters. In L mode like normal confinement plasma, where internal and edge transport barriers are not formed, the scaling of global energy confinement time (τE) with operational parameters shows positive mass dependence (M0.27; where M is effective ion mass) in electron cyclotron heating plasma and no mass dependence (M0.0) in neutral beam injection heating plasma. The non-negative ion mass dependence is anti-gyro-Bohm scaling. The role of the turbulence in isotope effects was also found by turbulence measurements and gyrokinetic simulation. Better accessibility to electron and ion internal transport barrier (ITB) plasma is found in deuterium (D) plasma than in hydrogen (H). Gyro kinetic non-linear simulation shows reduced ion heat flux due to the larger generation of zonal flow in deuterium plasma. Peaked carbon density profile plays a prominent role in reducing ion energy transport in ITB plasma. This is evident only in plasma with deuterium ions. New findings on the mixing and non-mixing states of D and H particle transports are reported. In the mixing state, ion particle diffusivities are higher than electron particle diffusivities and D and H ion density profiles are almost identical. In the non-mixing state, ion particle diffusivity is much lower than electron diffusivity. Deuterium and hydrogen ion profiles are clearly different. Different turbulence structures were found in the mixing and non-mixing states suggesting different turbulence modes play a role
    corecore