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Abstract 

A remarkable extension of high-ion-temperature regime was obtained in deuterium plasma experiments in Large Helical 

Device (LHD). In order to clarify transport characteristics in ion internal transport barrier (ion ITB) formation with isotope 

effect, a dataset of pure deuterium (nD/ne > 0.8) and pure hydrogen (nH/ne > 0.8) plasmas in high-ion-temperature (high-Ti) 

regime were analyzed, and two mechanisms of transport improvement were characterized. A significant reduction of ion heat 

transport in the core of both deuterium plasmas and hydrogen plasmas was observed, indicating ion ITB formation. The 

dependence of the ion heat diffusivity on temperature ratio (Te/Ti) and normalized Ti-gradient (R/LTi = -(R/Ti)(dTi/dr)) was 

investigated in the core region, in which gyrokinetic simulations with GKV code predict the destabilization of ion 

temperature gradient (ITG) modes. The Te/Ti dependence shows ITG-like property, while a significant deviation from the 

ITG-like property is found in the R/LTi dependence, indicating suppression of ITG mode in large R/LTi regime and resultant 

ion ITB formation. In the comparison between deuterium plasma and hydrogen plasma, the lower transport in the deuterium 

plasma are observed in both ion and electron heat diffusivities, indicating significant isotope effect. It was found with the 

nonlinear turbulent transport simulation with GKV that the zonal flow enhancement contributes the ITG suppression in the 

deuterium plasma.  

 

1. INTRODUCTION 

Confinement improvements have been intensively studied in magnetic confinement fusion 
researches. One of the long-standing mysteries of confinement improvement is the ion mass dependence on 

transport among hydrogen isotope plasmas, the so-called “isotope effect.” The significant reduction of threshold 

power for the transition from L-mode to H-mode and the improvement of core transport were observed in 

deuterium plasmas in many tokamaks [1-4]. A variety of factors such as different plasma heating method, the 

role of Te/Ti on the ion scale core turbulence, the impact of E x B shear stabilization in the core, high beta 

stabilization of ion scale core turbulence, and the impact of impurities may be related to isotope effects [1,5].  

The comparisons of confinement properties between hydrogen and deuterium have been also studied in 

helical/stellarator devices. In W7-AS, the energy confinement in deuterium plasma was observed to be 20 % 

higher than that in hydrogen plasma due to transport improvement in electron channel [6]. The lower particle 

diffusivity in the neutral beam injection (NBI) heated deuterium plasma than that in hydrogen plasma was 

observed in the low density regime of CHS plasmas [7]. The similar tendency in particle diffusivity was also 

observed in electron cyclotron heating (ECH) plasmas in Heliotron-J [8]. The impact of isotope mass on radial 

correlation length and long-range correlation (LRC) of turbulence has been identified in ECH plasmas in TJ-II 

stellarator [9]. The enhancement of the LRC and the increase in nonlinear coupling with broadband turbulence 

were also observed in deuterium dominant discharges in Heliotron-J [10]. In theoretical studies with helical 

configurations, the isotope dependence of the zonal flow response through equilibrium-scale electric field was 

identified in the ion temperature gradient (ITG) mode dominated regime by gyrokinetic simulation [11,12]. It is 

also found by gyrokinetic simulations that the combination of the collisional trapped electron mode (TEM) 

stabilization and the increase of the impacts of the steady state zonal flows lead to the significant transport 

reduction in deuterium plasmas [13,14].  

In the Large Helical Device (LHD) project, the deuterium plasma experiment with deuterium NBI heating 

has been performed, and plasma confinement characteristics were compared between hydrogen and deuterium 

plasmas in a wide parameter regime. The comparison of global confinement scaling and dimensional similarity 
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analyses between hydrogen and deuterium plasmas were performed in normal confinement regime, where the 

plasmas with internal transport barrier (ITB) formation, super-dense-core reported, and edge transport barrier 

(ETB) are not included, and clear mass hydrogen mass effect was identified as an additional factor to gyroBohm 

dependence [15]. The clear confinement improvement in deuterium plasma was also observed in high-

temperature regimes [16]. The detailed comparison of transports in ECH plasmas is reported [17,18]. In this 

paper, the comparison of transport characteristics between hydrogen and deuterium plasmas in high-ion-

temperature regime is discussed. In the second section, ion ITB in helical plasmas is briefly reviewed. The 

transport characteristics of hydrogen and deuterium plasmas are discussed in the third section. The physics 

mechanism of transport improvement in deuterium plasmas is discussed with the nonlinear gyrokinetic 

simulation in the fourth section.  

2. ION ITB IN HELICAL PLASMAS 

Internal transport barrier (ITB) is widely recognized as a transport improvement in the core of tokamak 

plasmas [19-21]. At the ITB position in tokamak plasmas, the transport improvement is observed in both 

electron and ion heat transports, and in some cases in particle transport as well. The ITB is characterized with 

radially localized increase of the inverse of temperature gradient scale length (R/LTi = -(R/Ti)(dTi/dr) or T = -

(s/Ti)(dTi/dr) where s is the Larmor radius) [19,21]. A variety of ITBs have been studied from the view point 

of the physics of transport suppression and the scenario of steady tokamak reactor operation [19-23].  

On the other hand, electron ITB and ion ITB were studied in helical/stellarator configurations [24-37]. In 

contrast to tokamak ITB, transport suppressions in electron channel and ion channel are basically decoupled in 

helical/stellarator, and electron ITB and ion ITB have been studied independently with a few exceptions [25,26]. 

The electron ITB is understood as a core electron root confinement (CERC) [24]. However, the physics of ion 

ITB formation in helical plasma are under investigation. The ion ITB in helical plasmas can be defined as 

transport improvement in the core region with violation of gyroBohm temperature dependence on heat 

diffusivity. Because the normal confinement plasmas without any transport improvements show gyroBohm 

temperature dependence [15], in which the heat diffusivity shows positive dependence on temperature, that is, 

χ ∝ 𝑇𝛼 and α = 1.0~1.5, where  is heat diffusivity. Figure 1 shows the ion temperature profile with and 

without ion ITB in LHD. The radial profile of ion heat diffusivity normalized by gyroBohm temperature 

dependence (~Ti
1.5) is almost flat profile in the core plasma without ion ITB. In the case of ion ITB formation, 

the reduction of ion heat diffusivity with the violation of gyroBohm dependence can be seen in Fig. 1(b). In 

order to clarify the ion ITB formation without transport analysis, characterizations of ion ITB with the ratio of 

ion temperature gradient in the core and periphery or with the inverse of ion temperature gradient scale (R/LTi) 

were proposed and used in LHD [27,28]. The criterion of  |∇𝑇i core ∇𝑇i periphery⁄ | > 1 is used to identify ion 

ITB formation in Fig. 1. The ratio of ion temperature gradient is |∇𝑇i(𝑟eff 𝑎99 = 0.4⁄ ) ∇𝑇i(𝑟eff 𝑎99 = 0.8⁄ )⁄ | =
1.8 for the ion ITB plasma and |∇𝑇i(𝑟eff 𝑎99 = 0.4⁄ ) ∇𝑇i(𝑟eff 𝑎99 = 0.8⁄ )⁄ | = 0.76 for the plasma without ion 

ITB, where reff and a99 are averaged minor radius and averaged radius which contains the 99% of stored energy, 

respectively. It is noted that the radial position of ITB foot is not clear in LHD, while the ion heat transport 

property changes in the core of ion ITB plasma. No transitions in the radial electric field profile and in the 

rotational transform (inverse of safety factor) profile were observed associated with ion ITB formation in LHD, 

which is the different properties from the physics mechanism of ITB formation in tokamaks. The neoclassical 

transport cannot explain the change of ion heat transport at the ion ITB. It seems that turbulent transport 

contributes to the ion ITB formation. It is also noted that linkage of the ion heat transport to impurity transport 

and toroidal rotation were clearly observed in LHD, while linkage to the electron heat transport is negligible 

[29,30]. When ion ITB is formed, significant exhaust of impurity is observed and the hollow profile of impurity, 

the so-called “impurity hole” appears in the core [31-34]. The co-directed toroidal rotation driven by co-directed 

NBI is observed to be significantly peaked when ion ITB is formed. The enhancement of co-directed toroidal 

rotation can be explained by the combination of reduction of momentum diffusivity with reduction of ion heat 

diffusivity and co-directed intrinsic rotation depending on the ion temperature gradient [30]. Some features in 

transport phenomena observed in the helical plasmas with ion ITB are similar to those in tokamaks, while the 

physics of transport improvement may be different from tokamak plasmas. The comparison of ITB plasmas 

between helical and tokamak plasmas is discussed in a recent review paper [23]. In study of MHD stability, 

bursting resistive interchange modes were often excited at high-ion-temperature regime (Ti0 > 8 keV) by 

helically trapped energetic particles at m/n=1/1 rational surface near the plasma edge, and the transient reduction 

of central ion temperature was observed [38,39]. However, any severe disruptive MHD events driven by 

pressure gradient was identified in the ion ITB discharges in LHD. 
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In theoretical studies with helical configurations, it was pointed out that ITG turbulence and zonal flow play 

a role in turbulent transport in high-ion-temperature regime [11,40]. It is also pointed out that zonal flow may be 

enhanced by the uniform and constant radial electric field in helical configurations [12]. However, the zonal 

flow was not experimentally identified associated with ion ITB formation in LHD.  

The deuterium plasma experiment has been performed in LHD experimental campaign in 2017. The 

achievable high-ion-temperature regime was extended and central ion temperature of 10 keV was obtained, 

while 8.1 keV was maximum ion temperature before the deuterium plasma experiment. The increase of ion 

temperature was attributable to the combination of increase of heating power of NBIs and improvement of ion 

heat transport in deuterium plasmas [16]. These high-temperature plasma (Ti0 > 7 keV) were produced with an 

ion mixture condition. A carbon pellet was injected to the plasma, because a tiny amount of carbon impurity 

around nC/ne~1% enhances ion ITB [41,42] and required for accurate ion temperature measurement with charge-

exchange spectroscopy. The low recycling wall condition with helium long pulse discharge cleaning technique 

is also necessary for high ion temperature plasma production [37,43-45]. In order to maximize the port-through 

power of NBIs, hydrogen beams from three tangential NBIs and deuterium beams from two perpendicular NBI 

were injected to the plasma. Therefore, the precise transport analyses to clarify the hydrogen mass effects on 

transport are difficult because the helium and carbon behaviors affect transport characteristics [36,41,42,46].  

 

FIG. 1. Profiles of (a) ion temperature profiles with and without ion ITB in LHD, and (b) ion heat diffusivity normalized by 

gyroBohm temperature dependence. 

 

3. TRANSPORT CHARACTERISTICS IN HIGH-ION-TEMPERATURE REGIME IN LHD 

 Helical plasma confinement is an alternative concept for tokamak plasmas. A pair of helical winding coils 

produces nested flux surface, and no plasma current is required for production of magnetic field configuration, 

which is the most important advantage for steady state operation. In addition, the helical divertor is intrinsically 

produced, and the particle and heat fluxes can be transported to the divertor plate located far from the last closed 

flux surface. The major and averaged minor radii for vacuum configuration are 3.60 m and 0.6 m, respectively. 
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The magnetic field strength on the magnetic axis is 2.85T at maximum in this experiment. The deuterium 

plasma experiments were started in the 19th experimental campaign in 2017. The isotope effects in the core of 

high-ion-temperature plasma have been investigated in this study. The ECH was operated only for plasma break 

down, and NBI heated plasmas were analyzed. Five NBI systems are operational in LHD. Three are tangential 

negative-ion-based NBIs (NBI#1-#3) with total port-through power of 16 MW in the case of hydrogen beams. 

The typical beam energy is 180 keV for both hydrogen and deuterium beams. Two are radial (perpendicular) 

positive-ion-based NBIs (NBI#4 & #5). The beam energy is 40 keV for hydrogen beam (NBI#4 and #5), and 60 

keV (NBI#4) and 80 keV (NBI#5) for deuterium beam. The total port-through power of NBI#4 and #5 is 12 

MW for hydrogen beam and 18 MW for deuterium beam. 

In order to minimize the multi-ion-species effects such as helium and carbon impurities on ion heat transport 

[35,46], the hydrogen plasmas and the deuterium plasmas with high-ion-purity were produced and analyzed in 

this study. The purity of the ion species is over 80% with respect to electron density for both plasmas: nD/ne > 

0.8 or nH/ne > 0.8. No carbon pellet was injected, and the typical density of carbon impurity is nC/ne ~ 0.005, 

which came from divertor plate. No impurity accumulation was observed in the present experiment. The 

effective atomic number is 𝑍eff ≤ 2 in the core region due to impurity hole formation. The plasmas were 

heated with NBIs. The deuterium beams were injected to deuterium plasmas and the hydrogen beams were 

injected to the hydrogen plasmas. The parameter regime of the analyzed data set is summarized in Fig.2. As 

shown in Fig. 2 (a), the ion ITB formation was identified based on the ratio of ion temperature gradient at reff/a99 

= 0.4 and 0.8 [27]. The energy confinement time is 𝜏𝐸 = 0.02~0.04 s for deuterium and 𝜏𝐸~0.02 for 

hydrogen plasmas in this dataset. The bulk plasma beta is relatively low (βbulk ≤ 0.007), while diamagnetic 

beta is relatively higher due to beam pressure (βbeam ≤ 0.012). Magnetohydrodynamic (MHD) activity is not 

significant and the effects are neglected in this analysis. Here we discuss mainly regarding the ion heat transport 

in the core region, because one of the targets in this study is characterization of ion heat transport with ion ITB 

formation, and electron heat transport was decoupled from ion heat transport in this parameter regime. The 

plasma density and ion heating power were scanned in this experiment, although the hydrogen plasma is very 

limited in parameter regime. It was observed that the central ion temperature in deuterium plasma is higher than 

that in the hydrogen plasma, indicating the better confinement in deuterium plasmas. 
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FIG. 2. Parameter spaces of the plasmas analyzed in this paper. (a) ion temperature gradient in the core (reff/a99=0.4) as a 

function of that in the periphery (reff/a99=0.8), where reff and a99 are the averaged minor radius and the averaged radius 

which contains the 99% of stored energy, respectively, (b) Central ion temperature as a function of central electron density, 

(c) central ion temperature as a function of ion heating power normalized by central electron density, and (d) central 

electron density as a function of ion heating power. The ion ITB formation in this database was identified by 
|∇𝑇i(𝑟eff 𝑎99 = 0.4⁄ ) ∇𝑇i(𝑟eff 𝑎99 = 0.8⁄ )⁄ | > 1, of which boundary is shown by a dashed line in the panel (a). 
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   The linear stability analysis suggested that the dominant instability in the core region of the high-ion-

temperature plasmas is ITG mode [13,47]. The ITG mode is mainly characterized with the inverse of ion 

temperature gradient scale length (R/LTi) and the temperature ratio (Te/Ti). The temperature ratio dependence of 

the ion heat transport is shown in Fig. 3. The ion heat diffusivity (i) is normalized by gyroBohm ion heat 

diffusivity (GB = ti
2vti/R0 ∝ 𝑇i

3/2
𝐴1/2, where ti is ion Larmor radius, vti is ion thermal speed, R0 is major 

radius, and A is mass number of ion). One can see that the ion heat diffusivity increases with the temperature 

ratio, and this dependence is consistent with the ITG nature, while the temperature ratio of hydrogen plasmas in 

this database is only higher than unity (Te/Ti >1) because of higher electron heating ratio of tangential NBI 

(~70 %) for hydrogen plasmas. It is noted that the clear difference between hydrogen and deuterium is not 

observed in the temperature ratio dependence.  

 

FIG. 3. The heat diffusivity normalized with gyroBohm factor as a function of temperature ratio at (a) 

reff/a99=0.3 and (b) 0.5. The typical uncertainty in estimation of heat diffusivity is also shown, which is mainly 

caused by evaluation of temperature gradient with transform from major radius to averaged minor radius 

and heating power calculations.   

 The dependence of ion heat diffusivity on the temperature gradient is shown in Fig. 4. The ion heat 

diffusivity decreases with the temperature gradient, indicating the breaking of the ITG nature and the transport 

improvement with R/LTi. This dependence was observed up to the transport level of the plasmas without ion ITB, 

in other words, no jump of the transport level was observed in the formation of ion ITB, which is consistent with 

the previous study [27]. It is noted that the ion ITB formation is attributable to the transport improvement with 

the breaking of ion temperature gradient dependence of ITG mode. The difference of transport levels between 

hydrogen plasmas and deuterium plasmas can also be seen, although the dependence on the temperature 

gradient is similar between them. This observation suggests that the mechanism of transport improvement is 

related to some parameters depending on ion mass, such as normalized Larmor radius: 𝜌∗(= 𝜌L 𝑎0⁄ ), where 𝜌𝐿 

is the ion Larmor radius, and 𝑎0 is the averaged minor radius. The E × B shear is widely recognized to 

contribute to the ITB formation in tokamaks [19,20] and seems to have suitable properties to explain the 

experimental observations in LHD. The shearing rate in toroidal plasma is roughly estimated as 
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𝛾̅E×B = |
𝑑𝑣E×B

𝑑𝑟
| (

𝑅

𝑣ti

) ~𝜌∗
𝜕

𝜕𝜌
(

𝑅

𝐿𝑇

) 

where 𝑣E×B is E × B drift velocity, 𝑣ti is ion thermal velocity, and ρ(= 𝑟 𝑎0⁄ ) is normalized minor radius 

[48,49]. The estimated shearing rate at reff/a99 = 0.5 is much smaller than the ITG growth rate, 𝛾E 𝛾𝐼𝑇𝐺 = ⁄ 0.03 

for hydrogen and 0.05 for deuterium [47]. Although, these values are much smaller than those in tokamaks [22], 

the finite Larmor radius effect is considered to be effective for the high-Ti plasmas because of relatively large 

Larmor radius: 𝜌D
∗ ~ 1 150⁄  and 𝜌H

∗ ~ 1 220⁄ . The difference between 𝜌D
∗  and 𝜌H

∗  might provide an 

explanation of the experimental observation in Fig. 4.  

 

FIG. 4. The heat diffusivity normalized with gyroBohm factor as a function of temperature normalized ion 

temperature gradient at (a) reff/a99=0.3 and (b) 0.5. 
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similar as possible and the electron heat transport is decoupled with the ion heat transport. Figure 5 shows the 

comparison between pure hydrogen plasma and pure deuterium plasma. The peaked ion temperature profiles, 

that is, the ion ITB were observed in both plasmas, and the ion temperature in the deuterium plasma is higher 

than that in the hydrogen plasma, indicating transport reduction in deuterium plasma. On the other hand, the 

electron temperature is a barely flat profile in the core for both plasmas and slightly higher for the hydrogen 

plasma. The density is also flat in the core region. However, the steeper density gradient was formed in the 

peripheral region of the deuterium plasma. The heating powers integrated from the center are also presented. 

The electron heating power is relatively higher for the hydrogen plasma, and the difference is caused by the 
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lower critical beam energy in the hydrogen plasma. The electron heating is dominated in the hydrogen plasma, 

which causes the higher electron temperature in the hydrogen plasma.  

The heat diffusivity and heat diffusivity normalized by the gyroBohm diffusivity (𝜒𝐺𝐵 = 𝜌i
2𝑣th 𝑅0⁄ ) are 

compared in Fig. 6. The hollow profiles of the gyroBohm-normalized ion heat diffusivity are observed in both 

plasmas, indicating the formation of ion ITB. On the other hand, the gyroBohm-normalized electron heat 

diffusivities are almost flat profiles, indicating no ITB formation in the electron heat transport for both hydrogen 

and deuterium plasmas. The large discrepancies of the normalized heat diffusivities between hydrogen and 

deuterium plasmas were also observed in both ion and electron heat diffusivities, indicating a significant 

hydrogen mass effect in the heat transport in the high-Ti plasmas.  

 

FIG. 5. Profiles of (a) ion temperature, (b) electron temperature, and (c) electron density and integrated heating power. 
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FIG. 6. Radial profiles of (a) ion and (b) electron heat diffusivity observed by the analysis of the experimental data shown in 

Fig. 5. (c) Radial profiles of neoclassical ion heat diffusivities calculated with FORTEC-3D code are also shown. The Solid 

lines show the heat diffusivities in a unit of [m2/s]. The dashed lines show the heat diffusivity normalized by the gyroBohm 

diffusivity. 

The neoclassical transport was calculated with FORTEC-3D code, which is a three-dimensional non-local 

neoclassical transport simulation code and solves drift kinetic equation based on f Monte Carlo method [50-

52]. Figure 6 (c) shows the neoclassical heat diffusivities, which were calculated with the plasma profiles 

obtained by the experimental observations shown in Fig. 5. The ion-root solution with negative radial electric 

field disappeared with 0.3< reff/a99 < 0.8 for both hydrogen and deuterium plasmas. The electron-root solution 

was obtained there, and the neoclassical heat diffusivity is significantly lower than the power balance analyses. 

The difference of the heat diffusivity between ion-root and electron root is roughly a factor of 1.5. Therefore, it 

is noted that the heat transport is dominated by turbulent transport for both hydrogen and deuterium plasmas, 

although the electron-root solution could not be experimentally confirmed. It was also noted that there is no 

significant difference in neoclassical transport between hydrogen and deuterium plasmas. 

4.2.   Nonlinear gyrokinetic simulation 

The nonlinear turbulent transport simulations with the gyrokinetic Vlasov flux-tube code (GKV) [53,54] were 

carried out to discuss physical mechanisms of the isotope effect identified in the experiment. The plasma 

parameter profiles observed experimentally (shown in Fig.5) were used for the calculations. In this calculation, 

the destabilization of the ITG mode in the core is observed in both hydrogen plasma and deuterium plasma. 

Figure 7 shows the time evolution of heat diffusivity at the half minor radius: reff/a99=0.5. The saturation is 

observed in turbulent transport after growth of zonal flow. The saturation level of the turbulent transport in the 

hydrogen plasma is higher than that observed in the experiment: (𝜒i 𝜒GB,H~10⁄ ). When the temperature gradient 
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is reduced with a factor of -20%, the turbulent transport level becomes almost the experimental value (see the 

dashed line in Fig. 7(a)), indicating that the turbulent transport simulation reproduced the ion heat diffusivity 

with the accuracy of 20% in the ion temperature gradient. In the estimation of experimental heat diffusivities, 

the uncertainty is 25% at maximum, which is mainly caused by evaluation of temperature gradient with 

transform from major radius to averaged minor radius and heating power calculations. The simulation also 

reproduced ion and electron heat diffusivities that decreased in the deuterium plasma. The zonal flow energy 

partition (𝐸ZF 𝐸total⁄  where 𝐸ZF and 𝐸total are kinetic energy of zonal flow and the summation of kinetic 

energies of zonal flow and turbulence, respectively.) is higher in the deuterium plasma, which indicates the ion 

mass impact on the zonal flow generation related to the transport suppression [14]. It is also noted that the 

theoretical and simulation studies of zonal flow response in helical plasmas with equilibrium electric fields 

pointed out the enhancement of zonal flow with heavier ion species [11,12]. Such effects are missing in the 

present simulations, and will be investigated in future studies.  

 

FIG. 7. Gyrokinetic simulation results of (a) normalized ion heat diffusivities, (b) normalized electron heat diffusivities, and 

(c) kinetic energy partition of zonal flow. 

5. SUMMARY 

The heat transport characteristics in the core region of high-ion-temperature helical plasmas with pure 

hydrogen ions and pure deuterium ions were investigated, and two types of transport improvement were 

identified. One type is that related to the formation of ion ITB. The suppression of turbulent transport with 

R/LTi was observed in the ITG unstable regime, while the 𝛾E 𝛾𝐼𝑇𝐺  ⁄ is smaller than those observed in 

tokamaks. The other type is isotope mass effect in the comparison between hydrogen and deuterium 

plasmas. The nonlinear turbulent transport simulation with GKV reproduced lower ion and electron heat 

diffusivities in the deuterium plasma than those in the hydrogen plasma, where the zonal flow 

enhancement is confirmed in the deuterium plasma. It is interesting that the isotope effects were observed 

both in ion and electron heat transports, although the ion and electron heat transport shows quite different 

characteristics, in other words, with ion ITB formation and without electron ITB formation.  
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The two mechanisms of transport improvement presented in this study are effective in high temperature 

regime in helical plasmas. Further understanding of the physical mechanism of improvements of heat 

diffusivities and extension of the transport improvement toward higher collisionality regime are inevitable 

for development of discharge scenario of fusion relevant plasmas in helical system and also contribute to 

comprehensive understanding of isotope effect in tokamak plasmas. 
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