3 research outputs found

    Design of a high-efficiency, high-resolution x-ray spectrometer for 1s Lamb shift measurements

    Get PDF
    Call number: LD2668 .T4 1985 S54Master of Scienc

    Electron Emission from Foils and Biological Materials after Proton Impact

    Get PDF
    Electron emission spectra from thin metal foils with thin layers of water frozen on them (amorphous solid water) after fast proton impact have been measured and have been simulated in liquid water using the event-by-event track structure code PARTRAC. The electron transport model of PARTRAC has been extended to simulate electron transport down to 1 eV by including low-energy phonon, vibrational and electronic excitations as measured by Michaud et al. (Radiat. Res. 159, 3–22, 2003) for amorphous ice. Simulated liquid water yields follow in general the amorphous solid water measurements at higher energies, but overestimate them significantly at energies below 50 eV. Originally published Radiation Physics and Chemistry, Vol. 77, No. 10-12, Oct-Dec 200

    Electron Emission from Foils and Biological Materials after Proton Impact

    No full text
    Electron emission spectra from thin metal foils with thin layers of water frozen on them (amorphous solid water) after fast proton impact have been measured and have been simulated in liquid water using the event-by-event track structure code PARTRAC. The electron transport model of PARTRAC has been extended to simulate electron transport down to 1 eV by including low-energy phonon vibrational and electronic excitations as measured by Michaud et al. (Radiat. Res. 159 3–22 2003) for amorphous ice. Simulated liquid water yields follow in general the amorphous solid water measurements at higher energies but overestimate them significantly at energies below 50 eV. Originally published Radiation Physics and Chemistry Vol. 77 No. 10-12 Oct-Dec 200
    corecore