27 research outputs found

    Electron Transfer from Cyt b559 and Tyrosine-D to the S2 and S3 states of the water oxidizing complex in Photosystem II at Cryogenic Temperatures

    Get PDF
    The Mn4CaO5 cluster of photosystem II (PSII) catalyzes the oxidation of water to molecular oxygen through the light-driven redox S-cycle. The water oxidizing complex (WOC) forms a triad with Tyrosine(Z) and P-680, which mediates electrons from water towards the acceptor side of PSII. Under certain conditions two other redox-active components, Tyrosine(D) (Y-D) and Cytochrome b (559) (Cyt b (559)) can also interact with the S-states. In the present work we investigate the electron transfer from Cyt b (559) and Y-D to the S-2 and S-3 states at 195 K. First, Y-D (aEuro cent) and Cyt b (559) were chemically reduced. The S-2 and S-3 states were then achieved by application of one or two laser flashes, respectively, on samples stabilized in the S-1 state. EPR signals of the WOC (the S-2-state multiline signal, ML-S-2), Y-D (aEuro cent) and oxidized Cyt b (559) were simultaneously detected during a prolonged dark incubation at 195 K. During 163 days of incubation a large fraction of the S-2 population decayed to S-1 in the S-2 samples by following a single exponential decay. Differently, S-3 samples showed an initial increase in the ML-S-2 intensity (due to S-3 to S-2 conversion) and a subsequent slow decay due to S-2 to S-1 conversion. In both cases, only a minor oxidation of Y-D was observed. In contrast, the signal intensity of the oxidized Cyt b (559) showed a two-fold increase in both the S-2 and S-3 samples. The electron donation from Cyt b (559) was much more efficient to the S-2 state than to the S-3 state

    PHILOSOPHICAL TRANSACTIONS -OF THE ROYAL SOCIETY QM/MM computational studies of substrate water binding to the oxygen-evolving centre of photosystem II

    No full text
    This paper reports computational studies of substrate water binding to the oxygen-evolving centre (OEC) of photosystem II (PSII), completely ligated by amino acid residues, water, hydroxide and chloride. The calculations are based on quantum mechanics/molecular mechanics hybrid models of the OEC of PSII, recently developed in conjunction with the X-ray crystal structure of PSII from the cyanobacterium Thermosynechococcus elongatus. The model OEC involves a cuboidal Mn3Ca04Mn metal cluster with three closely associated manganese ions linked to a single |Li4-oxo-ligated Mn ion, often called the 'dangling manganese'. Two water molecules bound to calcium and the dangling manganese are postulated to be substrate molecules, responsible for dioxygen formation. It is found that the energy barriers for the Mn(4)-bound water agree nicely with those of model complexes. However, the barriers for Ca-bound waters are substantially larger. Water binding is not simply correlated to the formal oxidation states of the metal centres but rather to their corresponding electrostatic potential atomic charges as modulated by charge-transfer interactions. The calculations of structural rearrangements during water exchange provide support for the experimental finding that the exchange rates with bulk lsO-labelled water should be smaller for water molecules coordinated to calcium than for water molecules attached to the dangling manganese. The models also predict that the Sx->S2 transition should produce opposite effects on the two water exchange rates

    QM/MM computational studies of substrate water binding to the oxygen-evolving centre of photosystem II

    No full text
    This paper reports computational studies of substrate water binding to the oxygen-evolving centre (OEC) of photosystem II (PSII), completely ligated by amino acid residues, water, hydroxide and chloride. The calculations are based on quantum mechanics/molecular mechanics hybrid models of the OEC of PSII, recently developed in conjunction with the X-ray crystal structure of PSII from the cyanobacterium Thermosynechococcus elongatus. The model OEC involves a cuboidal Mn3CaO4Mn metal cluster with three closely associated manganese ions linked to a single μ4-oxo-ligated Mn ion, often called the ‘dangling manganese’. Two water molecules bound to calcium and the dangling manganese are postulated to be substrate molecules, responsible for dioxygen formation. It is found that the energy barriers for the Mn(4)-bound water agree nicely with those of model complexes. However, the barriers for Ca-bound waters are substantially larger. Water binding is not simply correlated to the formal oxidation states of the metal centres but rather to their corresponding electrostatic potential atomic charges as modulated by charge-transfer interactions. The calculations of structural rearrangements during water exchange provide support for the experimental finding that the exchange rates with bulk 18O-labelled water should be smaller for water molecules coordinated to calcium than for water molecules attached to the dangling manganese. The models also predict that the S1→S2 transition should produce opposite effects on the two water-exchange rates

    Electron Transfer Kinetics in CdS Nanorod–[FeFe]-Hydrogenase Complexes and Implications for Photochemical H<sub>2</sub> Generation

    No full text
    This Article describes the electron transfer (ET) kinetics in complexes of CdS nanorods (CdS NRs) and [FeFe]-hydrogenase I from Clostridium acetobutylicum (CaI). In the presence of an electron donor, these complexes produce H<sub>2</sub> photochemically with quantum yields of up to 20%. Kinetics of ET from CdS NRs to CaI play a critical role in the overall photochemical reactivity, as the quantum efficiency of ET defines the upper limit on the quantum yield of H<sub>2</sub> generation. We investigated the competitiveness of ET with the electron relaxation pathways in CdS NRs by directly measuring the rate and quantum efficiency of ET from photoexcited CdS NRs to CaI using transient absorption spectroscopy. This technique is uniquely suited to decouple CdS→CaI ET from the processes occurring in the enzyme during H<sub>2</sub> production. We found that the ET rate constant (<i>k</i><sub>ET</sub>) and the electron relaxation rate constant in CdS NRs (<i>k</i><sub>CdS</sub>) were comparable, with values of 10<sup>7</sup> s<sup>–1</sup>, resulting in a quantum efficiency of ET of 42% for complexes with the average CaI:CdS NR molar ratio of 1:1. Given the direct competition between the two processes that occur with similar rates, we propose that gains in efficiencies of H<sub>2</sub> production could be achieved by increasing <i>k</i><sub>ET</sub> and/or decreasing <i>k</i><sub>CdS</sub> through structural modifications of the nanocrystals. When catalytically inactive forms of CaI were used in CdS–CaI complexes, ET behavior was akin to that observed with active CaI, demonstrating that electron injection occurs at a distal iron–sulfur cluster and is followed by transport through a series of accessory iron–sulfur clusters to the active site of CaI. Using insights from this time-resolved spectroscopic study, we discuss the intricate kinetic pathways involved in photochemical H<sub>2</sub> generation in CdS–CaI complexes, and we examine how the relationship between the electron injection rate and the other kinetic processes relates to the overall H<sub>2</sub> production efficiency
    corecore