3,385 research outputs found

    Nonadiabatic generation of coherent phonons

    Get PDF
    The time-dependent density functional theory (TDDFT) is the leading computationally feasible theory to treat excitations by strong electromagnetic fields. Here the theory is applied to coherent optical phonon generation produced by intense laser pulses. We examine the process in the crystalline semimetal antimony (Sb), where nonadiabatic coupling is very important. This material is of particular interest because it exhibits strong phonon coupling and optical phonons of different symmetries can be observed. The TDDFT is able to account for a number of qualitative features of the observed coherent phonons, despite its unsatisfactory performance on reproducing the observed dielectric functions of Sb. A simple dielectric model for nonadiabatic coherent phonon generation is also examined and compared with the TDDFT calculations.Comment: 19 pages, 11 figures. This is prepared for a special issue of Journal of Chemical Physics on the topic of nonadiabatic processe

    Time-dependent density functional theory for strong electromagnetic fields in crystalline solids

    Full text link
    We apply the coupled dynamics of time-dependent density functional theory and Maxwell equations to the interaction of intense laser pulses with crystalline silicon. As a function of electromagnetic field intensity, we see several regions in the response. At the lowest intensities, the pulse is reflected and transmitted in accord with the dielectric response, and the characteristics of the energy deposition is consistent with two-photon absorption. The absorption process begins to deviate from that at laser intensities ~ 10^13 W/cm^2, where the energy deposited is of the order of 1 eV per atom. Changes in the reflectivity are seen as a function of intensity. When it passes a threshold of about 3 \times 1012 W/cm2, there is a small decrease. At higher intensities, above 2 \times 10^13 W/cm^2, the reflectivity increases strongly. This behavior can be understood qualitatively in a model treating the excited electron-hole pairs as a plasma.Comment: 27 pages; 11 figure

    Global Optical Control of a Quantum Spin Chain

    Full text link
    Quantum processors which combine the long decoherence times of spin qubits together with fast optical manipulation of excitons have recently been the subject of several proposals. I show here that arbitrary single- and entangling two-qubit gates can be performed in a chain of perpetually coupled spin qubits solely by using laser pulses to excite higher lying states. It is also demonstrated that universal quantum computing is possible even if these pulses are applied {\it globally} to a chain; by employing a repeating pattern of four distinct qubit units the need for individual qubit addressing is removed. Some current experimental qubit systems would lend themselves to implementing this idea.Comment: 5 pages, 3 figure

    A BROAD SYMMETRY CRITERION FOR NONPARAMETRIC VALIDITY OF PARAMETRICALLY-BASED TESTS IN RANDOMIZED TRIALS

    Get PDF
    Summary. Pilot phases of a randomized clinical trial often suggest that a parametric model may be an accurate description of the trial\u27s longitudinal trajectories. However, parametric models are often not used for fear that they may invalidate tests of null hypotheses of equality between the experimental groups. Existing work has shown that when, for some types of data, certain parametric models are used, the validity for testing the null is preserved even if the parametric models are incorrect. Here, we provide a broader and easier to check characterization of parametric models that can be used to (a) preserve nonparametric validity of testing the null hypothesis, i.e., even when the models are incorrect, and (b) increase power compared to the non- or semiparametric bounds when the models are close to correct. We demonstrate our results in a clinical trial of depression in Alzheimer\u27s patients

    Configuration mixing calculation for complete low-lying spectra with the mean-field Hamiltonian

    Get PDF
    We propose a new theoretical approach to ground and low-energy excited states of nuclei extending the nuclear mean-field theory. It consists of three steps: stochastic preparation of many Slater determinants, the parity and angular momentum projection, and diagonalization of the generalized eigenvalue problems. The Slater determinants are constructed in the three-dimensional Cartesian coordinate representation capable of describing arbitrary shape of nuclei. We examine feasibility and usefulness of the method by applying the method with the BKN interaction to light 4N-nuclei, 12C, 16O, and 20Ne. We discuss difficulties of keeping linear independence for basis states projected on good parity and angular momentum and present a possible prescription.Comment: 12 pages, revtex

    THE EFFECT OF COMPRESSION TIGHTS AND DURATION OF TESTING ON CONTINUOUS JUMPING MECHANICAL POWER

    Get PDF
    INTRODUCTION: In order to improve their performance, athletes seek advancements in technology, such as clothing. Manufacturers of compression tights, advertise that their product adds support to lower extremity musculature, thus may slow the onset of fatigue. Few scientific studies, however, have been conducted to identify how advancements in apparel influence an athlete’s performance (Kraemer et al., 1996). The purpose of the present study was to identify the effects of compression tights on mechanical power for continuous jumping. Secondly, the effect of duration on the mechanical power output by using Bosco’s method (1983) over 15, 30, 45, and 60 sec time-frames, as well as the interaction between apparel and duration

    Hydrogen in the gas plume of an open-vent volcano, Mount Etna, Italy

    Get PDF
    We report here on the first hydrogen determinations in the volcanic gas plume of Mount Etna, in Italy, which we obtained during periodic field surveys on the volcano’s summit area with an upgraded MultiGAS. Using a specific (EZT3HYT) electrochemical sensor, we resolved H2 concentrations in the plume of 1–3 ppm above ambient (background) atmosphere and derived H2‐SO2 and H2‐H2O plume molar ratios of 0.002–0.044 (mean 0.013) and 0.0001–0.0042 (mean 0.0018), respectively. Taking the above H2‐SO2 ratios in combination with a time‐averaged SO2 flux of 1600 Gg yr−1, we evaluate that Etna contributes a time‐averaged H2 flux of ∌0.65 Gg yr−1, suggesting that the volcanogenic contribution to the global atmospheric H2 budget (70,000–100,000 Gg yr−1) is marginal. We also use our observed H2‐H2O ratios to propose that Etna’s passive plume composition is (at least partially) representative of a quenched (temperatures between 750°C and 950°C) equilibrium in the gas‐magma system, at redox conditions close to the nickel‐nickel oxide (NNO) mineral buffer. The positive dependence between H2‐SO2, H2‐H2O, and CO2‐SO2 ratios suggests that H2 is likely supplied (at least in part) by deeply rising CO2‐rich gas bubbles, fluxing through a CO2‐depleted shallow conduit magma.PublishedB102041.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive2.4. TTC - Laboratori di geochimica dei fluidiJCR Journalrestricte

    Electron spin coherence in metallofullerenes: Y, Sc and La@C82

    Full text link
    Endohedral fullerenes encapsulating a spin-active atom or ion within a carbon cage offer a route to self-assembled arrays such as spin chains. In the case of metallofullerenes the charge transfer between the atom and the fullerene cage has been thought to limit the electron spin phase coherence time (T2) to the order of a few microseconds. We study electron spin relaxation in several species of metallofullerene as a function of temperature and solvent environment, yielding a maximum T2 in deuterated o-terphenyl greater than 200 microseconds for Y, Sc and La@C82. The mechanisms governing relaxation (T1, T2) arise from metal-cage vibrational modes, spin-orbit coupling and the nuclear spin environment. The T2 times are over 2 orders of magnitude longer than previously reported and consequently make metallofullerenes of interest in areas such as spin-labelling, spintronics and quantum computing.Comment: 5 pages, 4 figure
    • 

    corecore